

Computing Curricula 2005:
Guidelines for Associate-Degree

Transfer Curriculum in
 SSooffttwwaarree EEnnggiinneeeerriinngg

August 2005

The ACM Two-Year College Education Committee

Robert D. Campbell, Rock Valley College
Committee Chair

Elizabeth K. Hawthorne, Union County College

Karl J. Klee, Alfred State College

The ACM Two-Year College Education Committee gratefully acknowledges the
outstanding contributions to the development of this report provided by our
colleagues, including Peter Drexel, Plymouth State University; Becky Grasser,
Lakeland Community College; Norma E. Hall, Manor College; John Impagliazzo,
Hofstra University; Andrew McGettrick, University of Strathclyde, United
Kingdom; Eric Roberts, Stanford University, as well as the previous work by the
joint ACM/IEEE-CS Software Engineering Task Force in the development of the
undergraduate report Software Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering.

This material is based in part upon work supported by the National Science
Foundation under Grant No. 0003263.

Computing Curricula 2005:
Guidelines for Associate-Degree

Transfer Curriculum in
SSooffttwwaarree EEnnggiinneeeerriinngg

The ACM Two-Year College Education Committee
and

The Joint Task Force on Software Engineering
Association for Computing Machinery

IEEE Computer Society

www.acmtyc.org

hold this page for copyright information

www.acm.org
www.acmtyc.org

www.computer.org

Table of Contents

Section 1: The Goal of This Report .. 1

Section 2: The Nature of Software Engineering... 3

Section 3: The Software Engineering Transfer Curriculum Track ... 5

Section 4: Additional Considerations ... 9

Bibliography... 11

Appendix A: Computer Science Imperative-First Course Descriptions .. 12

Appendix B: Computer Science Objects-First Course Descriptions .. 27

Appendix C: Discrete Mathematics Course Descriptions ... 41

Appendix D: ACM TYC Taxonomy of Learning Processes... 49

List of Tables

Table 1: Software Engineering Transfer Curriculum Track .. 5

Table 2: CS 101I, Programming Fundamentals.. 21

Table 3: CS 102I, the Object-Oriented Paradigm... 24

Table 4: CS 103I, Data Structures and Algorithms .. 26

Table 5: CS 101O, Introduction to Object-Oriented Programming ... 36

Table 6: CS 102O, Objects and Data Abstraction... 39

Table 7: CS 103O, Algorithms and Data Structures ... 42

Table 8: CS 105, Discrete Structures I.. 46

Table 9: CS 106, Discrete Structures II .. 47

Table 10: ACM TYC Taxonomy of Learning Processes .. 49

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 1

Section 1: The Goal of This Report

This report provides guidelines for a software engineering curriculum track within the
computer science degree program at associate-degree granting institutions. The report
focuses on a program of study designed for students intending to transfer into
baccalaureate programs awarding software engineering degrees. This report is
specifically designed to promote articulation by linking software engineering curriculum
in two-year colleges with that in baccalaureate institutions.

There are three major recent curriculum reports that provide foundation for this work.

• Computer Science curricula guidelines for undergraduate programs were finalized
and approved in 2001, and were published under the title Computing Curricula
2001: Computer Science. This work was the result of the Joint Task Force on
Computing Curricula 2001 established by the Institute of Electrical and
Electronics Engineers Computer Society (IEEE-CS) and the Association for
Computing Machinery (ACM). That report, together with accompanying
materials, can be found at http://www.computer.org/education/.

• Computer Science curricula guidelines for associate-degree granting institutions
were finalized and approved in 2003, and were published under the title
Computing Curricula 2003: Guidelines for Associate-Degree Curricula in
Computer Science. This work was the result of the IEEE-CS/ACM Joint Task
Force on Computing Curricula 2001 and the ACM Two-Year College Education
Committee. That report, together with accompanying materials, can be found at
http://www.acmtyc.org/.

The body of knowledge for associate-degree Computer Science is defined by the
following areas: Algorithms and Complexity, Architecture and Organization,
Discrete Structures, Graphics and Visual Computing, Human-Computer
Interaction, Information Management, Net-Centric Computing, Operating
Systems, Programming Fundamentals, Programming Languages, Software
Engineering, and Social and Professional Issues.

• Software Engineering curricula guidelines for undergraduate programs were

finalized and approved in 2004, and were published under the title Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs
in Software Engineering. This work was the result of a joint task force of the
ACM and IEEE-CS. That report, together with accompanying materials, can be
found at http://www.computer.org/education/.

This report, Computing Curricula 2005: Guidelines for Associate-Degree Transfer
Curriculum in Software Engineering, shares common goals and outcomes with the three
above-mentioned curriculum reports. In the United States, as many as one-half of
baccalaureate graduates initiate their studies in associate-degree granting institutions. For
this reason, it is important to outline a software engineering curriculum track that can be
initiated in the two-year college setting, specifically designed for seamless transfer into

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 2

an upper-division program. This report recommends a program of study that specifically
fulfills this requirement. However, it must be noted that the aims and objectives for
software engineering undergraduate degree programs can vary from one institution to
another for a variety of reasons. Ultimately, students are best served when institutions
establish well defined articulation agreements between associate-degree and
undergraduate-degree programs.

It is critical to note that two-year college students must complete the coursework in its
entirety to well-defined competency points to ensure success in the subsequent software
engineering coursework at the upper division level. For some students, this may require
more than two years of study at the associate level. Particular attention must be paid to
matching individual students to appropriate programs of study, taking into account each
student’s career goals and aspirations, talents and abilities, and life constraints such as
time, finances, and geography.

By basing this report on three recently published sets of international curricula
guidelines, the following goals are fulfilled:

• The use of computer science and mathematics courses from the Computing
Curricula 2003: Guidelines for Associate-Degree Curricula in Computer Science
report enables two-year colleges in the United States to incorporate a software
engineering track easily into an existing computer science transfer degree
program, irrespective of the specific department offering the degree.

• The incorporation of the software engineering philosophy, concepts, coursework
and outcomes from the Software Engineering 2004: Curriculum Guidelines for
Undergraduate Degree Programs in Software Engineering report helps to
properly prepare students and facilitates seamless articulation.

• The report can be used to implement an introductory software engineering
curriculum in countries outside the United States whose institutions have missions
consistent with the US two-year college model. Using the Computing Curricula
2003: Guidelines for Associate-Degree Curricula in Computer Science report as a
roadmap, students pursuing computer science could easily prepare for studies in
software engineering should they decide to alter their career plans.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 3

Section 2: The Nature of Software Engineering

Software engineering is more than just coding – it involves creating high-quality reliable
products in a systematic, controlled, and efficient manner, with important emphases on
analysis and evaluation, specification, design, and evolution. Many software products are
among the most complex of man-made systems, requiring programming techniques and
processes that scale well to the development of large applications, and that address the
ongoing demand for new and evolved software, all within acceptable timeframes and
budgets. For these reasons, software engineering requires both the analytical and
descriptive tools developed in computer science and the rigor that the engineering
disciplines bring to the reliability and trustworthiness of the artifacts that software
producers design and develop.

In particular, the field of software engineering:

• Must be viewed as a discipline with stronger ties to computer science than it has
to other engineering fields.

• Must share common characteristics with other engineering disciplines, including
quantitative measurement, structured decision making, effective use of tools, and
artifact reuse.

• Must apply engineering methods and practices to the development of software,
with special emphasis on the development of large software systems.

• Must integrate the principles of discrete mathematics and computer science with
engineering methodologies.

• Must utilize abstraction and modeling, and effective change management.
• Must include the quality control concepts of manufacturing process design.
• Must emphasize communication skills, teamwork skills, and professional

principles and best practices.

Given then that software engineering is built upon the foundations of both computer
science and engineering, the software engineering curriculum can be approached from
either a computer science-first or software engineering-first perspective. There is clearly
merit to each approach, and indeed the Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering report provides
two distinct introductory course sequences (“CS-first” and “SE-first”) that in the end
deliver students to the same point of preparation for more advanced study in the upper
division.

While some suggest that the engineering-first approach better ensures that students
develop a proper sense of the field in the context of engineering, the computer science-
first approach is much more prevalent, and for many reasons likely to remain so. This
report is based on the computer science-first approach for the following reasons:

• Students with limited programming experience may not have the necessary
background or context for the study of software engineering concepts in their
introductory courses.

• The current guidelines for foundation computer science curricula, which have
greatly influenced the coursework now in place at many institutions, include
concepts and programming paradigms that must be mastered through study and

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 4

practice. Once in place, these skills can be honed and refined in subsequent
coursework, including the study of other software engineering topics.

• For those institutions conducting computer science curricula based on current
ACM standards, the software engineering curriculum track can be implemented
easily. Implementation issues are much more manageable, including the
important considerations that must be given to course scheduling, faculty
preparation, student loads, hardware and software resources, instructional
materials and curriculum development.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 5

Section 3: The Software Engineering Transfer Curriculum Track

The Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer
Science report details a variety of paradigms for introductory computer science curricula,
together with computer science and mathematics course descriptions. Two of these
paradigms – Imperative-first and Objects-first – are suitable in a software engineering
curriculum. The tables below outline a two-year software engineering curriculum track
built upon each of those two computer science paradigms. The descriptions of the
computer science and mathematics courses identified below are detailed in Appendices
A, B, and C; the description for the SE201 software engineering course is detailed below.

The use of computing and mathematics courses, as well as overall curriculum structure,
from the Computing Curricula 2003: Guidelines for Associate-Degree Curricula in
Computer Science report enables two-year colleges to incorporate a software engineering
curriculum track easily into an existing computer science transfer degree program.
Students who complete this track could reasonably expect to transfer into baccalaureate
software engineering programs consistent with the Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering.

Year One

Imperative-First Paradigm
First Semester Second Semester
CS101I (Programming Fundamentals) CS102I (The Object-Oriented Paradigm)
 CS105 (Discrete Structures I)

Object-First Paradigm
First Semester Second Semester
CS101O (Introduction to Object-Oriented
Programming)

CS102O (Objects and Data Abstraction)

 CS105 (Discrete Structures I)

Year Two

Imperative-First Paradigm
Third Semester Fourth Semester
CS103I (Data Structures and Algorithms) SE201 (Introduction to Software

Engineering)
CS106 (Discrete Structures II)

Object-First Paradigm
Third Semester Fourth Semester
CS103O (Algorithms and Data Structures) SE201 (Introduction to Software

Engineering)
CS106 (Discrete Structures II)

Table 1: Software Engineering Transfer Curriculum Track

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 6

Three things should be noted after review of Table 1 above:
• The software engineering track fits very well into the computer science transfer

degree program, and the SE201 course can simply take the place of a suggested
second-year elective course.

• There is no impact on or addition to a student’s initial computer science sequence
of study.

• Students interested in the field of software engineering can simply be added to the
existing computer science and mathematics courses.

The following information details the SE201 course description, syllabus, student
performance objectives, and sample laboratory experiences. As described herein, this
course is consistent with the SE201 course described in the Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in Software Engineering
report. This will assist in the development of articulation agreements and student transfer
between associate-degree granting institutions and baccalaureate-degree granting
institutions.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 7

SE201 Introduction to Software Engineering
This core course introduces the basic principles and concepts of software engineering and
provides the necessary foundation for subsequent SE courses at the upper division level.
Topics include: basic terminology and concepts of software engineering; system
requirements, modeling, and testing; object oriented analysis and design using UML;
frameworks and APIs; client-server architecture; user interface technology; and the
analysis, design and programming of simple servers and clients.

Prerequisite: CS102I or CS102O

Student Performance Objectives:
Upon completion of this course, students will be able to:

• Develop clear, concise, and sufficiently formal requirements for extensions to an
existing system, based on the true needs of users and other stakeholders.

• Identify software engineering tools, their uses, and benefits derived from the use
of Computer Aided Systems Engineering (CASE).

• Apply design principles and patterns on reusable technology while designing and
implementing simple distributed systems, and differentiate between structured
design and object-oriented design.

• Create UML class diagrams which model aspects of the domain and the software
architecture, and UML sequence diagrams and state machines that correctly
model system behavior.

• Implement simple graphical user interfaces for a system, and apply simple
measurement techniques to software.

• Demonstrate an appreciation for the breadth of software engineering, including
the role of a software engineer and the associated ethical considerations.

Syllabus:

• Software engineering and its place as an engineering discipline.
• Review of the principles of object orientation.
• Reusable technologies as a basis for software engineering: frameworks and APIs.
• Introduction to client-server computing.
• Requirements analysis.
• UML class diagrams and object-oriented analysis; introduction to formal

modeling using OCL.
• Examples of building class diagrams to model various domains.
• Design patterns (abstraction-occurrence, composite, player-role, singleton,

observer, delegation, façade, adapter, observer, etc.).
• Use cases and user-centered design.
• Representing software behavior: sequence diagrams, state machines, activity

diagrams.
• General software design principles: decomposition, decoupling, cohesion, reuse,

reusability, portability, testability, flexibility, etc.
• Software architecture: distributed architectures, pipe-and-filter, model-view-

controller, etc.
• Introduction to testing and project management.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 8

Sample labs and assignments:
• Evaluating the performance of various simple software designs.
• Adding features to an existing system.
• Testing a system to verify conformance to test cases.
• Building a GUI for an application.
• Numerous exercises building models in UML, particularly class diagrams and

state machines.
• Developing and presenting a simple set of requirements (to be done as a team) for

some innovative client server application of very small size.
• Implementing the above, using reusable technology to the greatest extent possible.

Additional teaching considerations:

• This course is a good starting point for exposing students to moderately sized
existing systems. With such systems, they can learn and practice the essential
skills of reading and understanding code written by others. Students should write
code in the context of a particular domain, for example the biological, physical,
mathematical or chemical sciences or even wider spectra such as game
programming, business applications, and graphics and animation.

• It is assumed that students entering this course will have had little coverage of
software engineering concepts previously, but have had two courses that give
them a very good background in programming and basic computer science. It is
suggested that a core subset of UML be taught, rather than trying to cover all
features.

• It may be challenging for instructors to convey the nature of SE to students;
however, this challenge may be addressed through strategies such as field trips to
businesses and industries that utilize large software systems, guest lectures by
developers and users of large software systems, and discussions about embedded
systems in everyday life including ATMs, wireless devices, cell phones, PDAs,
portable MP3 players, and computer games.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 9

Section 4: Additional Program Considerations

The mathematics of discrete structures underlies all computing fields, including software
engineering. Hence, the mathematics courses CS105-106 (Discrete Structures I, II)
identified in this report are core to the software engineering curriculum track. While
these courses are sufficient to support the CS101-102-103-SE201 curriculum described in
this report, they can be meaningfully supplemented by an additional course devoted to
statistics and empirical methods. Not dissimilar from a statistics course offered
frequently in the two-year college setting, such a course may be necessary for the upper
division software engineering curriculum at some transfer institutions. The Software
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering report identifies this potential need and addresses it through a
course referred to as MA271 (Statistics and Empirical Methods). The course description
reads “Applied probability and statistics in the context of computing; experiment design
and the analysis of results; taught using examples from software engineering and other
computing disciplines.” It should also be noted that in order to fulfill articulation
agreements with some transfer institutions students may also need to complete a calculus
sequence (or additionally, linear algebra and/or differential equations).

Laboratory science courses such as physics, chemistry and biology provide students with
content knowledge and experience with the scientific method (summarized as
formulating problem statements and hypothesizing, designing and conducting
experiments, observing and collecting data, analyzing and reasoning, and evaluating and
concluding). Program requirements of this nature provide students with a foundation
should they later develop software in those scientific domains. It should be noted that in
some instances students may be required to complete a laboratory science course
sequence as part of this degree program in order to gain entry into the upper division.

Some two-year colleges offer introductory engineering courses, providing an overview of
the many individual disciplines constituting the world of engineering. These courses
often engage students in stimulating activities that peak their interests and set the stage
for career choices in such fields. Students pursuing software engineering degree
programs would strengthen their insights into engineering by completing such
coursework.

In their upper division work, students will focus their emerging software engineering
skills in a particular application area of interest to them. The foundation for that selection
may be laid in various elective courses that students pursue in the lower division. These
could include courses in business and finance; biology and health sciences; mathematics
and statistics; and information technology.

Effective oral and written communications abilities are of critical importance to software
engineering professionals; therefore, students should be required to complete
communications courses as part of this degree program. These skills must be identified,
developed, nurtured and incorporated throughout a software engineering curriculum.
Students must master effective writing, speaking, and listening abilities, and then
consistently demonstrate those talents in a variety of settings, including formal and

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 10

informal, large group and one-on-one, technical and non-technical, point and counter-
point.

Colleges will ensure that degree programs ultimately fulfill all general education and
related requirements arising from institutional, state, and regional accreditation
guidelines. The curriculum recommendations contained herein are compatible with those
requirements. Articulation agreements often guide curriculum content as well, and are
important considerations in the formulation of programs of study, especially for transfer-
oriented programs.

Professional software engineers have a responsibility to society and their work carries
significant liabilities. Consequently, software engineers must conduct themselves in an
ethical and professional manner. The preamble to the Software Engineering Code of
Ethics and Professional Practice [ACM 1999] states:

Because of their roles in developing software systems, software
engineers have significant opportunities to do good or cause harm, to
enable others to do good or cause harm, or to influence others to do
good or cause harm. To ensure, as much as possible, that their efforts
will be used for good, software engineers must commit themselves to
making software engineering a beneficial and respected profession. In
accordance with that commitment, software engineers shall adhere to
the following Code of Ethics and Professional Practice.

Hence, instructors must ensure that the software engineering curriculum forces students
to become familiar with the Code, and engages them in discussions and activities that
emphasize the eight principles of the Code.

There is an alternate approach to the computing curriculum sequence outlined in this
report that would place students into a software engineering course sequence at the onset,
in advance of the computer science coursework. This approach is detailed in the
Software Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering report. With this approach, in the first year students
take two courses (SE101, then SE102) that focus on software engineering with a major
emphasis on the engineering perspective, but also introduce some programming and
fundamental computer science concepts. In the second year, students take two courses
(CS103 and SE200) that complete the development of the computer science content. For
associate degree granting institutions with existing computer science programs, this
alternative approach is not the most feasible implementation; for other institutions, the
alternative approach may be feasible.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 11

Bibliography

ACM Two-Year College Computing Curricula Task Force, Guidelines for Associate-
Degree Programs in Information Systems, ACM Press (2004).

ACM Two-Year College Computing Curricula Task Force, Computing Curricula 2003:
Guidelines for Associate-Degree Curricula in Computer Science, ACM Press (2003).

ACM Two-Year College Computing Curricula Task Force, Computing Curricula
Guidelines for Associate-Degree Programs: Computing Sciences. ACM Press (1993).

Association for Computing Machinery, Inc. & the Institute for Electrical and Electronics
Engineers, Inc. Software Engineering Code of Ethics and Professional Practice. (1999).
Retrieved July 12, 2005 from http://www.acm.org/serving/se/code.htm.

Bloom, Benjamin S., the Taxonomy of Educational Objectives: Classification of
Educational Goals. Handbook I: The Cognitive Domain, McKay Press, New York
(1956).

Gorgone, Davis, Valacich, Topi, Feinstein, and Longnecker. IS 2002 Model Curriculum
and Guidelines for Undergraduate Degree Programs in Information Systems.
Association for Computing Machinery, et al. (2002).

IEEE-CS/ACM Joint Curriculum Task Force, Software Engineering 2004: Curriculum
Guidelines for Undergraduate Degree Programs in Software Engineering.

IEEE-CS/ACM Joint Curriculum Task Force, Computing Curricula 2001: Computer
Science.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 12

Appendix A
Computer Science Imperative-First

Course Descriptions

The Imperative-first approach consists of a three-course sequence that begins with a
procedural structured-programming approach to fundamental programming concepts,
followed by object-oriented concepts, and culminates with data structures.

At the completion of the CS101I, CS102I, CS103I course sequence, the following student
performance objectives will be met. These performance objectives are grouped by the
body of knowledge categories for computer science.

AL: Algorithms and Complexity Student Performance Objectives
 Basic algorithmic analysis

1. Explain the use of big O, omega, and theta notation to describe the amount of
work done by an algorithm.

2. Determine the time and space complexity of simple algorithms.
 Algorithmic strategies

1. Describe the shortcoming of brute-force algorithms.
2. Implement a divide and conquer algorithm like Quicksort.
3. Discuss assorted heuristic problem solving methods.

 Fundamental computing algorithms
1. Design and implement various quadratic and O(NlogN) sorting algorithms.
2. Design and implement an appropriate hashing function for an application.
3. Discuss the efficiency considerations for sorting searching and hashing.
4. Design and implement a collision-resolution algorithm for a hash table.
5. Discuss other performance considerations such as small versus large files,

programming time, etc.
 Basic computability

1. Provide a sample problem that has no algorithmic solution.

AR: Architecture and Organization Student Performance Objectives

Machine level representation of data
1. Explain the purpose of different formats to represent numerical data.
2. Explain how negative integers are stored in sign-magnitude and two’s-

complement representation.
3. Describe the internal representation of non-numeric data.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 13

Assembly level machine organization
1. Explain the organization of the classical von Neumann machine and its major

functional units.
2. Explain how to execute an instruction in a classical von Neumann machine.

GV: Graphics and Visual Computing Student Performance Objectives
 Fundamental techniques in graphics

1. Distinguish the capabilities of different levels of graphics software and
describe the appropriateness of each.

2. Produce images using a standard graphics API.
3. Discuss the 3-dimensional world coordinate system.

HC: Human Computer Interaction Student Performance Objectives
 Foundations of HCI

1. Discuss the reasons for human-centered software development.
2. Summarize the basic science of psychological and social interaction.
3. Distinguish between the different interpretations that the same icon, symbol,

word, and color have among varying human cultures.
4. Identify ways to respect human diversity when interacting with a computer

system.
 Building simple GUI

1. Identify several fundamental principles for effective GUI design.
2. Use a GUI toolkit to create a simple application that supports a graphical user

interface.
3. Produce two instances of the same GUI design; one based on fundamental

design principles and the other ignoring these principles.
4. Conduct a simple usability test for each instance and compare the results.

IM: Information Management Student Performance Objectives
 Database systems

1. Explain the characteristics that distinguish the database approach from the
traditional approach of programming with data files.

2. Describe the components of a database system and give examples of their use.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 14

NC: Net-Centric Computing Student Performance Objectives
 Introduction to net-centric computing

1. Discuss the evolution of early networks and the Internet.
2. Describe emerging technologies in the net-centric computing area such as

wireless computing and voice over IP.

OS: Operating Systems Student Performance Objectives
 Overview of operating systems

1. Explain the objectives and functions of modern operating systems.
2. Describe how operating systems historically have evolved from primitive

batch systems to sophisticated multi-user systems.
3. Describe the functions of a contemporary operating system with respect to

 convenience, efficiency, and the ability to evolve.

PF: Programming Fundamentals Student Performance Objectives
 Fundamental programming constructs

1. Analyze and explain the behavior of simple programs involving the
fundamental programming constructs.

2. Explain the use of each data type and how each is stored in memory.
3. Modify and expand short programs using control structures and functions.
4. Design, implement, test and debug a program that uses each of the following

fundamental programming constructs: basic computation, simple I/O, standard
conditional and iterative structures, and the definition of functions.

5. Choose appropriate selection and iteration constructs for a given programming
task.

6. Apply the techniques of structured (functional) decomposition to break a
program into smaller pieces.

7. Describe parameters passing between functions.
 Algorithms and problem solving

1. Discuss why algorithms are useful in problem solving with a programming
language.

2. List the recommended steps in problem solving.
3. Create algorithms for solving simple problems.
4. Use pseudocode or a programming language to implement, test, and debug

algorithms for problem solving.
5. Discuss what makes a good algorithm.
6. Analyze an algorithm’s correctness and efficiency.

 Fundamental data structures
1. Define a data structure and an Abstract Data Type (ADT) and distinguish

among built-in and user-defined data structures.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 15

2. Discuss the representation and use of primitive data types and built-in data
structures.

3. Describe common applications for each data structure covered.
4. Describe ADTs at a logical or abstract level and discuss how each works.
5. Implement the user-defined data structures in a high-level language.
6. Compare alternative implementations of data structures with respect to

performance.
7. Write and execute a program for testing a data structure implementation.
8. Compare and contrast dynamic and static data structure implementations.
9. Choose the appropriate data structure for modeling a given problem.

 Recursion
1. Describe and exemplify the concept of recursion.
2. Verify correctness of a recursive routine by identifying the base case and the

general case.
3. Compare iterative and recursive solutions for elementary problems such as

factorial.
4. Define the divide-and-conquer approach.
5. Implement, test, and debug simple recursive functions.
6. Describe how recursion can be implemented using a stack.

 Event-driven programming
1. Explain the difference between event-driven programming and command-line

programming.
2. Identify programming languages that support event-driven programming and

those that do not.
3. Produce code to test and debug simple event-driven programs that respond to

user events.

PL: Programming Languages Student Performance Objectives
 Overview of programming languages

1. Summarize the evolution of programming languages illustrating how this
history has led to the paradigms available today.

2. Identify at least one distinguishing characteristic for each of the programming
paradigms covered in this unit.

3. Evaluate the tradeoffs between the different paradigms, considering such
issues as space efficiency, time efficiency (of both the computer and the
programmer), safety, and power of expression.

4. Define issues concerning programming-in-the-small versus programming-in-
the-large.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 16

 Virtual machines
1. Describe the importance and power of abstraction in the context of virtual

machines.
2. Explain the benefits of intermediate languages in the compilation process.
3. Evaluate the tradeoffs in performance vs. portability.
4. Explain how executable programs can breach computer system security by

accessing disk files and memory.
 Introduction to language translation

1. Compare and contrast compiled and interpreted execution models, outlining
the relative merits of each.

2. Describe the phases of program translation from source code to executable
code and the files produced by these phases.

 Declaration and types
1. Explain the value of declaration models, especially with respect to

programming-in-the-large.
2. Identify the properties of a variable [object] such as its associated address,

value, scope, persistence, and size.
3. Discuss type incompatibility.
4. Demonstrate different forms of binding, visibility, scoping, and lifetime

management.
5. Defend the importance of types and type checking in providing abstraction

and safety.
6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage

collection).
 Abstraction mechanisms

1. Explain how abstraction mechanisms support the creation of reusable software
components.

2. Demonstrate the difference between call-by-value and call-by-reference
parameter passing.

3. Defend the importance of abstractions, especially with respect to
programming-in-the-large.

4. Describe how the computer system uses activation records to manage program
modules and their data.

 Object-oriented programming
1. Justify the philosophy of object-oriented design and the concepts of

encapsulation, abstraction, inheritance, and polymorphism.
2. Design, implement, test, and debug simple programs in an object-oriented

programming language.
3. Defend the benefits of separating class specification from class

implementation

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 17

4. Describe how the class mechanism supports encapsulation and information
hiding.

5. Design, implement, and test the implementation of “is-a” relationships among
objects using a class hierarchy and inheritance.

6. Implement polymorphism using virtual functions.
7. Compare and contrast the notion of [static] overloading v. [run-time]

overriding functions.
8. Describe the [different levels] use of selective inheritance.
9. Demonstrate the use of generic program components that use types as

parameters.
10. Explain the relationship between the static structure of the class and the

dynamic structure of the instances [objects] of the class.
11. Describe how iterators access the elements of a container.

SE: Software Engineering Student Performance Objectives
 Software design

1. Discuss the properties of good software design.
2. Compare and contrast object-oriented analysis and design with structured

analysis and design.
3. Select and apply appropriate design patterns in the construction of a software

application.
4. Create and specify the software design for a medium-size software product

using a software requirement specification and the Unified Modeling
Language (UML).

 Using APIs
1. Explain the value of application programming interfaces (APIs) in software

development.
2. Explain the difference between sequential and event-driven programming.
3. Use class browsers and related tools during the development of applications

using APIs.
4. Examine programs that use large-scale API packages.

 Software tools and environments
1. Select, with justification, an appropriate set of CASE tools to support the

software development of a range of software products.
2. Analyze and evaluate a set of tools in a given area of software development

(e.g., management, modeling, or testing).
3. Demonstrate the use of a range of software tools in support of the

development of a software product of medium size.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 18

 Software processes
1. Explain the software life cycle, define its phases, and describe the deliverables

that are produced.
2. Explain the role of process maturity models.
3. Describe the software engineering process using standard metrics.
4. Compare the traditional waterfall model to the incremental model, the object-

oriented model, and other select models.
 Software requirements and specifications

1. Apply key elements and common methods for elicitation and analysis to
produce a set of software requirements for a medium-sized software system.

2. Use a common, non-formal method to model and specify (in the form of a
requirements specification document) the requirements for a medium-size
software system (e.g., structured analysis or object-oriented-analysis).

3. Review a software requirements document using best practices to determine
its quality.

4. Demonstrate a commonly used prototyping tool.
 Software validation

1. Distinguish between program validation and verification.
2. Distinguish between and implement the different types and levels of testing

(unit, integration, systems, and acceptance) for medium-size software
products.

3. Analyze a test plan for a medium-size code segment.
4. Evaluate, as part of a team, an inspection of a medium-size code segment.
5. Describe the role that tools can play in the validation of software.

 Software evolution
1. Identify the principal issues associated with software evolution and explain

their impact on the software life cycle.
2. Discuss the advantages and disadvantages of software reuse.
3. Discuss the opportunities for software reuse in a variety of contexts.

 Software project management
1. Summarize the key elements of team building and team management.
2. Review a software project plan that includes topics such as: estimates of size

and effort, a schedule, resource allocation, configuration control, change
management, and project risk identification and management.

3. Compare and contrast the different methods and techniques used to assure the
quality of a software product.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 19

SP: Social and Professional Student Performance Objectives
 History of computing

1. List the contributions of several pioneers in the computing field.
2. Compare daily life before and after the advent of computing.
3. Identify significant continuing trends in the history of the computing field and

their impact on society.
 Social context of computing

1. Interpret the social context of a particular computing implementation.
2. Identify assumptions and values embedded in a particular design.
3. Describe ways in which computing alters the interaction between people.
4. Explain why computing/network access is restricted in certain countries.

 Professional and ethical responsibility
1. Name the strengths and weaknesses of relevant professional codes as

expressions of professionalism and guides to decision-making.
2. Identify ethical issues that arise in software development and determine how

to address them technically and ethically.
3. Review a computer use policy with enforcement measures.
4. Discuss the professional codes of ethics from the ACM, the IEEE Computer

Society, and other organizations.
 Intellectual property

1. Distinguish among software patent, copyright, and trade secret protection
including statue of limitation.

2. Discuss the legal background of copyright in national and international law.
3. Recognize that patent and copyright laws may vary from country to country.
4. Discuss the consequences of software piracy on software developers and the

role of enforcement organizations.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 20

CS101I: Programming Fundamentals
This course introduces the fundamental concepts of procedural programming. Topics
include data types, control structures, functions, arrays, files, and the mechanics of
running, testing, and debugging. The course also offers an introduction to the historical
and social context of computing and an overview of computer science as a discipline.

Prerequisites: No programming or computer science experience is required;
mathematical preparation sufficient to qualify for precalculus at the college level.

Syllabus:
• Computing applications: Word processing; spreadsheets; editors; files and directories
• Fundamental programming constructs: Syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in
the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing

• Machine level representation of data: Bits, bytes, and words; numeric data
representation and number bases; representation of character data

• Overview of operating systems: The role and purpose of operating systems; simple file
management

• Introduction to net-centric computing: Background and history of networking and the
Internet; demonstration and use of networking software including e-mail, telnet, and
FTP

• Human-computer interaction: Introduction to design issues
• Software development methodology: Fundamental design concepts and principles;

structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

• Social context of computing: History of computing and computers; evolution of ideas
and machines; social impact of computers and the Internet; professionalism, codes of
ethics, and responsible conduct; copyrights, intellectual property, and software piracy.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 21

Knowledge

Area Units Covered
Suggested

Hours
Fundamental programming constructs 10
Algorithms and problem-solving 3

PF

Fundamental data structures 2
Introduction to language translation 1
Declarations and types 3

PL

Abstraction mechanisms 3
Machine level representation of data 1 AR
Assembly level machine organization 2

OS Overview of operating systems 1
NC Introduction to net-centric computing 1
HC Foundations of human-computer interaction 1
GV Fundamental techniques in graphics 1

Software design 3
Software tools and environments 2

SE

Software processes 1
History of computing 1
Social context of computing 1
Professional and ethical responsibilities 1

SP

Intellectual property 1
Other Topics of local interest 1

TOTAL: 40

Table 2: CS101I, Programming Fundamentals

Notes:
This course represents the first semester of an imperative-first introductory track that
covers fundamental programming concepts in three semesters. Although covering
programming fundamentals in two semesters has long been standard in computer science
education, more and more programming topics can legitimately be identified as
fundamental, making it more difficult to provide a complete introduction to this material
in a single year. In terms of the curriculum, students should be able to move on to more
advanced computer science courses after taking course sequence CS101I-102I-103I.

Although this is the first course of the educational process for a computer science student,
it is reasonable to expect that a student will have at least some exposure to computers
before taking this course. The prepared student will have experience with email, World
Wide Web use, and basic word processing. Note that this course will not necessarily be
taken during a student’s first semester in college. Any remedial work (generally
identified as “developmental studies” or “learning support” coursework) in mathematics
or language arts should be completed before the student is allowed to begin this course
sequence.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 22

The intent of this introductory course will be to contain an integrated laboratory
component. The lab component provides the important hands-on programming
experience that is vital for beginning computer science students. The forty (40) total
hours listed above are considered “lecture” hours and typically two (2) hours of lab
equates to one (1) hour of lecture.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 23

CS102I: The Object-Oriented Paradigm
This course introduces the concepts of object-oriented programming to students with a
background in the procedural paradigm. The course begins with a review of control
structures and data types with emphasis on structured data types and array processing. It
then moves on to introduce the object-oriented programming paradigm, focusing on the
definition and use of classes along with the fundamentals of object-oriented design.
Other topics include an overview of programming language principles, simple analysis of
algorithms, basic searching and sorting techniques, and an introduction to software
engineering issues.

Prerequisite: CS 101I
Corequisite: CS 105

Syllabus:
• Review of control structures, functions, and primitive data types
• Object-oriented programming: Object-oriented design; encapsulation and information-

hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies

• Fundamental computing algorithms: simple searching and sorting algorithms (linear
and binary search, selection and insertion sort)

• Fundamentals of event-driven programming
• Introduction to computer graphics: Using a simple graphics API
• Overview of programming languages: History of programming languages; brief survey

of programming paradigms
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Introduction to language translation: Comparison of interpreters and compilers;

language translation phases; machine-dependent and machine-independent aspects of
translation

• Introduction to database systems: History and motivation for database systems; use of
a database query language

• Software evolution: Software maintenance; characteristics of maintainable software;
reengineering; legacy systems; software reuse

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 24

Knowledge

Area Units Covered
Suggested

Hours
Fundamental programming constructs 3
Algorithms and problem-solving 6
Fundamental data structures 5

PF

Event-driven programming 1
AL Fundamental computing algorithms 3

Overview of programming languages 1
Virtual machines 1
Introduction to language translation 1

PL

Object-oriented programming 6
AR Machine level representation of data 2

Foundations of human computer interaction 1 HC
Building a simple graphical user interface 2

IM Database systems 1
Software design 1
Using APIs 2
Software requirements and specifications 1
Software validation 1

SE

Software evolution 1
Other Topics of local interest 1

TOTAL: 40

Table 3: CS102I, the Object-Oriented Paradigm

Notes:
This course represents the second semester of an imperative-first introductory track that
covers fundamental programming concepts in three semesters. Although covering
programming fundamentals in two semesters has long been standard in computer science
education, more and more programming topics can legitimately be identified as
fundamental, making it more difficult to provide a complete introduction to this material
in a single year. In terms of the curriculum, students should be able to move on to more
advanced computer science courses after taking course sequence CS101I-102I-103I.

This second computer science course should be taken in parallel with the first discrete
mathematics course, CS 105, to ensure that the appropriate mathematical foundations of
computer science are covered along with the applications of those topics.

The intent of this introductory course will be to contain an integrated laboratory
component. The lab component provides the important hands-on programming
experience that is vital for beginning computer science students. The forty (40) total
hours listed above are considered “lecture” hours and typically two (2) hours of lab
equates to one (1) hour of lecture.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 25

CS103I: Data Structures and Algorithms
This course builds upon the foundation provided by the CS101I-102I sequence to
introduce the fundamental concepts of data structures and the algorithms that proceed
from them. Topics include recursion, the underlying philosophy of object-oriented
programming, fundamental data structures (including stacks, queues, linked lists, hash
tables, trees, and graphs), the basics of algorithmic analysis, and an introduction to the
principles of language translation.

Prerequisites: CS 102I
Corequisite: CS 106

Syllabus:
• Review of elementary programming concepts
• Fundamental data structures: Stacks; queues; linked lists; hash tables; trees; graphs
• Object-oriented programming: Object-oriented design; encapsulation and information

hiding; classes; separation of behavior and implementation; class hierarchies;
inheritance; polymorphism

• Fundamental computing algorithms: O(N log N) sorting algorithms; hash tables,
including collision-avoidance strategies; binary search trees; representations of graphs;
depth- and breadth-first traversals

• Recursion: The concept of recursion; recursive mathematical functions; simple
recursive procedures; divide-and-conquer strategies; recursive backtracking;
implementation of recursion

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big O,
little o, omega, and theta notation; standard complexity classes; empirical
measurements of performance; time and space tradeoffs in algorithms; using
recurrence relations to analyze recursive algorithms

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; branch-and-bound; heuristics; pattern matching and string/text
algorithms; numerical approximation algorithms

• Overview of programming languages: Programming paradigms
• Software engineering: Software validation; testing fundamentals, including test plan

creation and test case generation; object-oriented testing

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 26

Knowledge

Area Units Covered
Suggested

Hours
Fundamental data structures 12 PF
Recursion 5
Basic algorithmic analysis 2
Algorithmic strategies 3
Fundamental computing algorithms 5

AL

Basic computability 1
Overview of programming languages 1 PL
Object-oriented programming 8
Software validation 1 SE
Software project management 1

Other Topics of local interest 1
 TOTAL: 40

Table 4: CS103I, Data Structures and Algorithms

Notes:
This course represents the third and final semester of an imperative-first introductory
track that covers fundamental programming concepts in three semesters. Although
covering programming fundamentals in two semesters has long been standard in
computer science education, more and more programming topics can legitimately be
identified as fundamental, making it more difficult to provide a complete introduction to
this material in a single year. In terms of the curriculum, students should be able to move
on to more advanced computer science courses after taking course sequence CS101I-102I-
103I.

This third computer science course should be taken in parallel with the second discrete
mathematics course, CS 106, to ensure that the appropriate mathematical foundations of
computer science are covered along with the applications of those topics.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 27

Appendix B
Computer Science Objects-First

Course Descriptions

The Objects-first implementation strategy incorporates throughout the curriculum object-
oriented software design and programming methodologies. Object-oriented design
promotes thinking about software development in a way that more closely models
interaction with the real world. Modeling programming problems as abstract objects that
communicate with each other helps to manage the complexity of software projects. The
object-oriented programming paradigm is based on the relationship of interacting and
cooperating data objects to solve computing problems.

At the completion of the CS101O, CS102O, CS103O course sequence, the following
student performance objectives will be met. These performance objectives are grouped by
the body of knowledge categories for computer science.

AL: Algorithms and Complexity Student Performance Objectives
 Basic algorithmic analysis

1. Explain the use of big O, omega, and theta notation to describe the amount of
work done by an algorithm.

2. Use big O, omega, and theta notation to give asymptotic upper, lower, and
tight bounds on time and space complexity of algorithms.

3. Determine the time and space complexity of simple algorithms.
 Algorithmic strategies

1. Describe the shortcoming of brute-force algorithms.
2. Implement a greedy algorithm, such as Prim’s algorithm.
3. Implement a divide and conquer algorithm like Quicksort.
4. Use backtracking to solve problem like mazes.
5. Discuss assorted heuristic problem solving methods.
6. Use pattern matching to analyze substrings.
7. Use numerical approximation to solve mathematical problems, such as finding

the roots of a polynomial.
 Fundamental computing algorithms

6. Design and implement various quadratic and O(NlogN) sorting algorithms.
7. Design and implement an appropriate hashing function for an application.
8. Discuss the efficiency considerations for sorting searching and hashing.
9. Design and implement a collision-resolution algorithm for a hash table.
10. Discuss other performance considerations such as small versus large files,

programming time, etc.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 28

Basic computability
1. Provide a sample problem that has no algorithmic solution.

AR: Architecture and Organization Student Performance Objectives

Machine level representation of data
1. Explain the purpose of different formats to represent numerical data.
2. Explain how negative integers are stored in sign-magnitude and two’s-

complement representation.
3. Discuss how fixed-length number representations affect accuracy and

precision.
4. Describe the internal representation of non-numeric data.

GV: Graphics and Visual Computing Performance Objectives
 Fundamental techniques in graphics

1. Distinguish the capabilities of different levels of graphics software and
describe the appropriateness of each.

2. Produce images using a standard graphics API.
3. Discuss the 3-dimensional world coordinate system.

 Graphic systems
1. Describe the appropriateness of graphics architecture for a given application.
2. Explain the functions of different input devices.

HC: Human Computer Interaction Student Performance Objectives
 Foundations of HCI

1. Discuss the reasons for human-centered software development.
2. Summarize the basic science of psychological and social interaction.
3. Distinguish between the different interpretations that the same icon, symbol,

word, and color have among varying human cultures.
4. Identify ways to respect human diversity when interacting with a computer

system.
 Building simple GUI

1. Identify several fundamental principles for effective GUI design.
2. Use a GUI toolkit to create a simple application that supports a graphical user

interface.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 29

PF: Programming Fundamentals Student Performance Objectives
 Fundamental programming constructs

1. Analyze and explain the behavior of simple programs involving the
fundamental programming constructs.

2. Explain the use of each data type and how each is stored in memory.
3. Modify and expand short programs using control structures and functions.
4. Design, implement, test and debug a program that uses each of the following

fundamental programming constructs: basic computation, simple I/O, standard
conditional and iterative structures, and the definition of functions.

5. Choose appropriate selection and iteration constructs for a given programming
task.

6. Describe parameters passing between functions.
 Algorithms and problem solving

1. Discuss why algorithms are useful in problem solving with a programming
language.

2. List the recommended steps in problem solving.
3. Create algorithms for solving simple problems.
4. Use pseudocode or a programming language to implement, test, and debug

algorithms for problem solving.
5. Analyze an algorithm’s correctness and efficiency.

 Fundamental data structures
1. Define a data structure and an Abstract Data Type (ADT) and distinguish

among built-in and user-defined data structures.
2. Discuss the representation and use of primitive data types and built-in data

structures.
3. Describe common applications for each data structure covered.
4. Describe ADTs at a logical or abstract level and discuss how each works.
5. Implement the user-defined data structures in a high-level language.
6. Compare alternative implementations of data structures with respect to

performance.
7. Write and execute a program for testing a data structure implementation.
8. Compare and contrast dynamic and static data structure implementations.
9. Choose the appropriate data structure for modeling a given problem.

 Recursion
1. Describe and exemplify the concept of recursion.
2. Verify correctness of a recursive routine by identifying the base case and the

general case.
3. Compare iterative and recursive solutions for elementary problems such as

factorial.
4. Define the divide-and-conquer approach.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 30

5. Implement, test, and debug simple recursive functions.
6. Describe how recursion can be implemented using a stack.
7. Discuss problems for which backtracking is an appropriate solution.
8. Determine when a recursive solution is appropriate for a problem.

 Event-driven programming
1. Explain the difference between event-driven programming and command-line

programming.
2. Identify programming languages that support event-driven programming and

those that do not.
3. Produce code to test and debug simple event-driven programs that respond to

user events.
4. Produce code that responds to exception conditions raised during execution.

PL: Programming Languages Student Performance Objectives
 Overview of programming languages

1. Summarize the evolution of programming languages illustrating how this
history has led to the paradigms available today.

2. Identify at least one distinguishing characteristic for each of the programming
paradigms covered in this unit.

3. Evaluate the tradeoffs between the different paradigms, considering such
issues as space efficiency, time efficiency (of both the computer and the
programmer), safety, and power of expression.

4. Define issues concerning programming-in-the-small versus programming-in-
the-large.

 Virtual machines
1. Describe the importance and power of abstraction in the context of virtual

machines.
2. Explain the benefits of intermediate languages in the compilation process.
3. Evaluate the tradeoffs in performance vs. portability.
4. Explain how executable programs can breach computer system security by

accessing disk files and memory.
 Declaration and types

1. Explain the value of declaration models, especially with respect to
programming-in-the-large.

2. Identify the properties of a variable [object] such as its associated address,
value, scope, persistence, and size.

3. Discuss type incompatibility.
4. Demonstrate different forms of binding, visibility, scoping, and lifetime

management.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 31

5. Defend the importance of types and type checking in providing abstraction
and safety.

6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage
collection).

 Abstraction mechanisms
1. Explain how abstraction mechanisms support the creation of reusable software

components.
2. Demonstrate the difference between call-by-value and call-by-reference

parameter passing.
3. Defend the importance of abstractions, especially with respect to

programming-in-the-large.
4. Describe how the computer system uses activation records to manage program

modules and their data.
 Object-oriented programming

1. Justify the philosophy of object-oriented design and the concepts of
encapsulation, abstraction, inheritance, and polymorphism.

2. Design, implement, test, and debug simple programs in an object-oriented
programming language.

3. Defend the benefits of separating class specification from class
implementation

4. Describe how the class mechanism supports encapsulation and information
hiding.

5. Design, implement, and test the implementation of “is-a” relationships among
objects using a class hierarchy and inheritance.

6. Implement polymorphism using virtual functions.
7. Compare and contrast the notion of [static] overloading v. [run-time]

overriding functions.
8. Describe the [different levels] use of selective inheritance.
9. Demonstrate the use of generic program components that use types as

parameters.
10. Explain the relationship between the static structure of the class and the

dynamic structure of the instances [objects] of the class.
11. Describe how iterators access the elements of a container.

 Functional Programming
1. Outline the strengths and weaknesses of the functional programming

paradigm.
2. Analyze programs that use the functional paradigm.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 32

SE: Software Engineering Student Performance Objectives
 Software design

1. Discuss the properties of good software design.
2. Compare and contrast object-oriented analysis and design with structured

analysis and design.
3. Select and apply appropriate design patterns in the construction of a software

application.
4. Create and specify the software design for a medium-size software product

using a software requirement specification and the Unified Modeling
Language (UML).

 Using APIs
1. Explain the value of application programming interfaces (APIs) in software

development.
2. Explain the difference between sequential and event-driven programming.
3. Use class browsers and related tools during the development of applications

using APIs.
4. Examine programs that use large-scale API packages.

 Software tools and environments
1. Select, with justification, an appropriate set of CASE tools to support the

software development of a range of software products.
2. Analyze and evaluate a set of tools in a given area of software development

(e.g., management, modeling, or testing).
3. Demonstrate the use of a range of software tools in support of the

development of a software product of medium size.
 Software processes

1. Explain the software life cycle, define its phases, and describe the deliverables
that are produced.

2. Explain the role of process maturity models.
3. Describe the software engineering process using standard metrics.
4. Compare the traditional waterfall model to the incremental model, the object-

oriented model, and other select models.
 Software requirements and specifications

1. Apply key elements and common methods for elicitation and analysis to
produce a set of software requirements for a medium-sized software system.

2. Use a common, non-formal method to model and specify (in the form of a
requirements specification document) the requirements for a medium-size
software system (e.g., structured analysis or object-oriented-analysis).

3. Review a software requirements document using best practices to determine
its quality.

4. Demonstrate a commonly used prototyping tool.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 33

 Software validation
1. Distinguish between program validation and verification.
2. Distinguish between and implement the different types and levels of testing

(unit, integration, systems, and acceptance) for medium-size software
products.

3. Analyze a test plan for a medium-size code segment.
4. Evaluate, as part of a team, an inspection of a medium-size code segment.
5. Describe the role that tools can play in the validation of software.

 Software evolution
1. Identify the principal issues associated with software evolution and explain

their impact on the software life cycle.
2. Discuss the advantages and disadvantages of software reuse.
3. Discuss the opportunities for software reuse in a variety of contexts.

 Software project management
1. Summarize the key elements of team building and team management.
2. Review a software project plan that includes topics such as: estimates of size

and effort, a schedule, resource allocation, configuration control, change
management, and project risk identification and management.

3. Compare and contrast the different methods and techniques used to assure the
quality of a software product.

SP: Social and Professional Student Performance Objectives
 History of computing

1. List the contributions of several pioneers in the computing field.
2. Compare daily life before and after the advent of computing.
3. Identify significant continuing trends in the history of the computing field and

their impact on society.
 Social context of computing

1. Interpret the social context of a particular computing implementation.
2. Identify assumptions and values embedded in a particular design.
3. Describe ways in which computing alters the interaction between people.
4. Explain why computing/network access is restricted in certain countries.

 Professional and ethical responsibility
1. Name the strengths and weaknesses of relevant professional codes as

expressions of professionalism and guides to decision-making.
2. Identify ethical issues that arise in software development and determine how

to address them technically and ethically.
3. Review a computer use policy with enforcement measures.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 34

4. Discuss the professional codes of ethics from the ACM, the IEEE Computer
Society, and other organizations.

 Risks and liabilities of computer-based systems
1. Explain, using case studies, the limitations of software testing.
2. Describe the differences between correctness, reliability, and safety.
3. Discuss the potential for hidden problems in reuse of existing components.
4. Recognize the risks associated with various computer crimes.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 35

CS101O: Introduction to Object-Oriented Programming
This course introduces the fundamental concepts of programming from an object-oriented
perspective. Topics include simple data types, control structures, an introduction to array
and string data structures and algorithms, as well as debugging techniques and the social
implications of computing. The course emphasizes good software engineering principles
and developing fundamental programming skills in the context of a language that
supports the object-oriented paradigm.

Prerequisites: No programming or computer science experience is required;
mathematical preparation sufficient to qualify for precalculus at the college level.

Syllabus:
• Introduction to the history of computer science
• Ethics and responsibility of computer professionals
• Introduction to computer systems and environments
• Introduction to object-oriented paradigm: Abstraction; objects; classes; methods;

parameter passing; encapsulation; inheritance; polymorphism
• Fundamental programming constructs: Basic syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; structured decomposition

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing

• Introduction to programming languages
• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in

the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 36

Knowledge
Area Units Covered

Suggested
Hours

Fundamental programming constructs 9
Algorithms and problem-solving 4

PF

Fundamental data structures 3
Fundamental computing algorithms 1 AL
Basic computability 1
Overview of programming languages 2
Declarations and types 2
Object-oriented programming 7

PL

Functional programming 1
AR Machine level representation of data 2

Software design
Software tools and environments

1
1

SE

Software validation 1
History of computing 1
Social context of computing 1
Professional and ethical responsibilities 1

SP

Risks and liabilities of computer-based systems 1
Other Topics of local interest 1

TOTAL: 40

Table 5: CS101O, Introduction to Object-Oriented Programming

Notes:
This course represents the first semester of an objects-first introductory track that covers
fundamental programming concepts in three semesters. Although covering programming
fundamentals in two semesters has long been standard in computer science education,
more and more programming topics can legitimately be identified as fundamental,
making it more difficult to provide a complete introduction to this material in a single
year. In terms of the curriculum, students should be able to move on to more advanced
computer science courses after taking course sequence CS101O-102O-103O.

Although this is the first course of the educational process for a computer science student,
it is reasonable to expect that a student will have at least some exposure to computers
before taking this course. The prepared student will have experience with email, World
Wide Web use, and basic word processing. Note that this course will not necessarily be
taken during a student’s first semester in college. Any remedial work (generally
identified as “developmental studies” or “learning support” coursework) in mathematics
or language arts should be completed before the student is allowed to begin this course
sequence.

What differentiates this course sequence from the imperative-first implementation in
CS101I-102I 103I is the early emphasis on objects. The discussion of classes, subclasses,

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 37

and inheritance typically precedes even such basic concepts as conditional and iterative
control statements.

The intent of this introductory course will be to contain an integrated laboratory
component. The lab component provides the important hands-on programming
experience that is vital for beginning computer science students. The forty (40) total
hours listed above are considered “lecture” hours and typically two (2) hours of lab
equates to one (1) hour of lecture.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 38

CS102O: Objects and Data Abstraction
This course continues the introduction from CS101O to the methodology of programming
from an object-oriented perspective. Through the study of object design, this course also
introduces the basics of human-computer interfaces, graphics, and the social implications
of computing, with an emphasis on software engineering.

Prerequisite: CS 101O
Corequisite: CS 105

Syllabus:
• Review of object-oriented programming: Object-oriented methodology, object-

oriented design; software tools
• Principles of object-oriented programming: Inheritance; class hierarchies;

polymorphism; abstract and interface classes; container/collection classes and iterators
• Object-oriented design: Concept of design patterns and the use of APIs; modeling

tools such as class diagrams, CRC cards, and UML use cases
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Fundamental computing algorithms: Searching; sorting; introduction to recursive

algorithms
• Fundamental data structures: Built-in, programmer-created, and dynamic data

structures
• Event-driven programming: Event-handling methods; event propagation; exception

handling
• Foundations of human-computer interaction: Human-centered development and

evaluation; principles of good design and good designers; engineering tradeoffs;
introduction to usability testing

• Fundamental techniques in graphics: Hierarchy of graphics software; using a graphics
API; simple color models; homogeneous coordinates; affine transformations; viewing
transformation; clipping

• Software engineering issues: Tools; processes; requirements; design and testing;
design for reuse; risks and liabilities of computer-based systems

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 39

Knowledge

Area Units Covered
Suggested

Hours
Fundamental data structures 3
Recursion 2

PF

Event-driven programming 3
Basic algorithmic analysis 1 AL
Fundamental computing algorithms 2
Virtual machines 1
Declarations and types 1
Abstraction mechanisms 3

PL

Object-oriented programming 7
AR Machine level representation of data 1

Foundations of human-computer interaction 1 HC
Building a simple graphical user interface 1
Fundamental techniques in graphics 2 GV
Graphic systems 1
Software design 3
Using APIs 2
Software tools and environments 1
Software requirements and specifications 1
Software validation 1

SE

Software evolution 1
Other Topics of local interest 2

TOTAL: 40

Table 6: CS102O, Objects and Data Abstraction

Notes:
This course represents the second semester of an objects-first introductory track that
covers fundamental programming concepts in three semesters. Although covering
programming fundamentals in two semesters has long been standard in computer science
education, more and more programming topics can legitimately be identified as
fundamental, making it more difficult to provide a complete introduction to this material
in a single year. In terms of the curriculum, students should be able to move on to more
advanced computer science courses after taking course sequence CS101O-102O-103O.

This second computer science course should be taken in parallel with the first discrete
mathematics course, CS 105, to ensure that the appropriate mathematical foundations of
computer science are covered along with the applications of those topics.

What differentiates this course sequence from the imperative-first implementation in
CS101I-102I 103I is the early emphasis on objects. The discussion of classes, subclasses,
and inheritance typically precedes even such basic concepts as conditional and iterative
control statements.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 40

The intent of this introductory course will be to contain an integrated laboratory
component. The lab component provides the important hands-on programming
experience that is vital for beginning computer science students. The forty (40) total
hours listed above are considered “lecture” hours and typically two (2) hours of lab
equates to one (1) hour of lecture.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 41

CS103O: Algorithms and Data Structures
This course builds upon the introduction to object-oriented programming begun in
CS101O and CS102O with an emphasis on algorithms, data structures, and software
engineering.

Prerequisite: CS 102O
Corequisite: CS 106

Syllabus:
• Review of object-oriented design
• Review of basic algorithm design
• Review of professional and ethical issues
• Algorithms and problem solving: Classic techniques for algorithm design; problem

solving in the object-oriented paradigm; application of algorithm design techniques to
a medium-sized project, with an emphasis on formal methods of testing

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big O
notation; standard complexity classes; empirical measurements of performance; time
and space tradeoffs in algorithms

• Recursion: The concept of recursion; recursive mathematical functions; simple
recursive procedures; divide-and-conquer strategies; recursive backtracking;
implementation of recursion; recursion on trees and graphs

• Fundamental computing algorithms: Hash tables; binary search trees; representations
of graphs; depth- and breadth-first traversals; shortest-path algorithms; transitive
closure; minimum spanning tree; topological sort

• Fundamental data structures: Pointers and references; linked structures;
implementation strategies for stacks, queues, and hash tables; implementation
strategies for graphs and trees; strategies for choosing the right data structure

• Software engineering: Software project management; building a medium-sized system,
in teams, with algorithmic efficiency in mind

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 42

Knowledge

Area Units Covered
Suggested

Hours
PF Algorithms and problem-solving 3

 Fundamental data structures 11
 Recursion 6

AL Basic algorithmic analysis 3
 Algorithmic strategies 6
 Fundamental computing algorithms 5

SE Software design 3
 Software project management 1

Other Topics of local interest 2
TOTAL: 40

Table 7: CS103O, Algorithms and Data Structures

Notes:
This course represents the third and final semester of an objects-first introductory track
that covers fundamental programming concepts in three semesters. Although covering
programming fundamentals in two semesters has long been standard in computer science
education, more and more programming topics can legitimately be identified as
fundamental, making it more difficult to provide a complete introduction to this material
in a single year. In terms of the curriculum, students should be able to move on to more
advanced computer science courses after taking course sequence CS101O-102O-103O.

This third computer science course should be taken in parallel with the second discrete
mathematics course, CS 106, to ensure that the appropriate mathematical foundations of
computer science are covered along with the applications of those topics.

What differentiates this course sequence from the imperative-first implementation in
CS101I-102I 103I is the early emphasis on objects. The discussion of classes, subclasses,
and inheritance typically precedes even such basic concepts as conditional and iterative
control statements.

The intent of this introductory course will be to contain an integrated laboratory
component. The lab component provides the important hands-on programming
experience that is vital for beginning computer science students. The forty (40) total
hours listed above are considered “lecture” hours and typically two (2) hours of lab
equates to one (1) hour of lecture.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 43

Appendix C
Discrete Mathematics Course Descriptions

Students should complete a two-course discrete math sequence, as outlined below. The
learning objectives associated with discrete mathematics support this degree program. A
mathematics department or a computing department (or jointly) should deliver the
courses with that intent.

At the completion of the CS105 and CS106 discrete math course sequence, the following
student performance objectives will be met. These performance objectives are grouped by
the body of knowledge categories for computer science.

AL: Algorithmic and Complexity Student Performance Objectives
 Basic algorithmic analysis

1. Use big O, omega, and theta notation to give asymptotic upper, lower, and
tight bounds on time and space complexity of algorithms.

2. Deduce recurrence relations that describe the time complexity of recursively
defined algorithms.

 Basic computability
1. Discuss the concept of finite state machines.
2. Explain context-free grammars.
3. Provide examples that illustrate the implications of uncomputability.

 Complexity of classes P and NP
1. Define the classes P and NP.
2. Explain the significance of NP-completeness.
3. Discuss a classic known NP-complete problem.

AR: Architecture and Organization
 Digital logic and digital systems

1. Use mathematical expressions to describe the functions of simple
combinational and sequential circuits.

2. Design a simple circuit using the fundamental building blocks.

DS: Discrete Structures Student Performance Objectives
 Functions, relations, and sets

1. Explain with examples the basic terminology of functions, relations, and sets.
2. Perform the operations associated with sets, functions, and relations.
3. Relate practical examples to the appropriate set, function, or relation model,

and interpret the associated operations and terminology in context.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 44

4. Demonstrate basic counting principles, including uses of diagonalization and
the pigeonhole principle.

 Basic logic
1. Apply formal methods of symbolic propositional and predicate logic.
2. Recognize how formal tools of symbolic logic are used to model algorithms

and real-life situations.
3. Use formal logic proofs and logical reasoning to solve problems such as

puzzles.
4. Recognize the importance and limitations of predicate logic.

 Proof techniques
1. Outline the basic structure of and give examples of each proof technique.
2. Discuss which type of proof is best for a given problem.
3. Relate the ideas of mathematical induction to recursion and recursively

defined structures.
4. Identify the difference between mathematical and strong induction and give

examples of the appropriate use of each.
5. Apply proof techniques to solve problems in computer science, including

software engineering, program semantics, and algorithm analysis.
 Basics of counting

1. Apply the sum and product rule for counting.
2. Explain the difference between combinations, C(n, r) and

permutations, P(n, r).
3. Discuss Pascal’s Identity for combinations and the Binomial Theorem.
4. Describe the concepts of initial condition, recurrence relation and the solution

of recurrence relation.
5. Solve problems using arithmetic progressions, geometric progressions, and

Fibonacci numbers.
6. Use the principle of inclusion-exclusion for counting.
7. Apply the pigeonhole principle.
8. Discuss examples of recurrence, including matrix multiplication,

triangulation, and sorting.
9. Demonstrate the use of the Master Theorem to provide an instant asymptotic

solution.
10. Distinguish among various cases of the Master Theorem.

 Graphs and trees
1. Illustrate by example the basic terminology of graph theory, and some of the

properties and special cases of each.
2. Examine different traversal methods for trees and graphs.
3. Model problems in computer science using graphs and trees.
4. Relate graphs and trees to data structures, algorithms, and counting.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 45

Discrete probability
1. Calculate probabilities of events and expectations of random variables for

elementary problems such as games of chance.
2. Differentiate between dependent and independent events.
3. Apply the Binomial Theorem to independent events and Bayes Theorem to

dependent events.
4. Apply the tools of probability to solve problems such as the Monte Carlo

method, the average case analysis of algorithms, and hashing.
 Interpreting Descriptive Statistics

1. Distinguish between descriptive and inferential statistics and discuss the
problems with using entire populations to obtain data.

2. Differentiate between numeric and qualitative data and review the graphing
methods and statistics appropriate to each.

3. Use technology (e.g., Minitab, the TI-83 or Excel) to compute statistics and
graph distributions.

4. Calculate and discuss the appropriate use of different measures of central
tendency, variation, and position.

5. Discuss examples of the misuse of statistics.
6. Solve normal distribution problems, using z-scores and a table or technology.

SP: Social and Professional Issues Student Performance Objects
 Methods and tools of analysis

1. Identify the premises and the conclusion in an ethical argument.
2. Recognize the basic logical fallacies in an ethical argument.
3. Discuss the ethical tradeoffs in a technical decision.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 46

CS 105: Discrete Structures I
This course introduces the foundations of discrete mathematics as they apply to computer
science, focusing on providing a solid theoretical foundation for further work. Topics
include functions, relations, sets, simple proof techniques, Boolean algebra, propositional
logic, digital logic, elementary number theory, and the fundamentals of counting.

Prerequisites: Mathematical preparation sufficient to qualify for precalculus at the
college level.
Corequisite: CS102

Syllabus:

• Introduction to logic and proofs: Direct proofs; proof by contradiction; mathematical
induction

• Fundamental structures: Functions (surjections, injections, inverses, composition);
relations (reflexivity, symmetry, transitivity, equivalence relations); sets (Venn
diagrams, complements, Cartesian products, power sets); pigeonhole principle;
cardinality and countability

• Boolean algebra: Boolean values; standard operations on Boolean values; de Morgan’s
laws

• Propositional logic: Logical connectives; truth tables; normal forms (conjunctive and
disjunctive); validity

• Digital logic: Logic gates, flip-flops, counters; circuit minimization
• Descriptive statistics: methods of collecting data, frequency distribution graphs,

measures of central tendency, variation, and position, and use of z-scores.
• Basics of counting: Counting arguments; pigeonhole principle; permutations and

combinations; binomial coefficients

Knowledge
Area Units Covered

Suggested
Hours

Functions, relations, and sets 9
Basic logic 5
Proof techniques 4
Basics of counting 9

DS

Interpreting descriptive statistics 9
AR Digital logic and digital systems 3
SP Methods and tools of analysis 1

 TOTAL: 40

Table 8: CS 105, Discrete Structures I

Notes:
The Discrete Structures (DS) material is divided into two courses. CS105 covers the first
half of the material followed by CS106, which completes the topic coverage. Although
the principal focus is discrete mathematics, the course is likely to be more successful if it
highlights applications whose solutions require proof, logic, and counting.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 47

CS 106: Discrete Structures II
This course continues the discussion of discrete mathematics introduced in CS 105.
Topics in the second course include predicate logic, recurrence relations, graphs, trees,
matrices, computational complexity, elementary computability, and discrete probability.

Prerequisite: CS 105
Corequisite: CS 103

Syllabus:

• Review of previous course
• Predicate logic: Universal and existential quantification; modus ponens and

modus tollens; limitations of predicate logic
• Recurrence relations: Basic formulae; elementary solution techniques
• Graphs and trees: Fundamental definitions; simple algorithms; traversal strategies;

proof techniques; spanning trees; applications
• Matrices: Basic properties; applications
• Computational complexity: Order analysis; standard complexity classes
• Elementary computability: Countability and uncountability; diagonalization proof

to show uncountability of the reals; definition of the P and NP classes; simple
demonstration of the halting problem

• Discrete probability: Finite probability spaces; conditional probability,
independence, Bayes’ rule; random events; random integer variables;
mathematical expectation

Knowledge
Area Units Covered

Suggested
Hours

Basic logic 7
Proof techniques 8
Graphs and trees 4

DS

Discrete probability 6
Basic algorithmic analysis 2
Basic computability 3

AL

The complexity classes P and NP 2
Matrices 3 Other
Topics of local interest 5

TOTAL: 40

Table 9: CS 106, Discrete Structures II

Notes:
This implementation of the Discrete Structures area (DS) divides the material into two
courses: CS105 and CS106. Like CS 105, CS 106 introduces mathematical topics in the
context of applications that require those concepts as tools. For this course, likely
applications include transportation network problems (such as the traveling salesperson
problem) and resource allocation. Matrices have computing applications in many areas,

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 48

including inventory control, cost analysis, and data analysis. The unit on matrices
introduces basic terminology, the operations of addition, scalar and matrix multiplication,
the transpose and inverse, and 2x2 and 3x3 determinants.

Guidelines for Associate-Degree Transfer Curriculum in Software Engineering

 49

Appendix D

ACM TYC Taxonomy of Learning Processes

Table 10 below is an adaptation of Bloom’s Taxonomy (1956) by the ACM Two-Year
College Education Committee used across all their curricular reports beginning with
1993.

Level of Taxonomy Definition Verbs to Help Design Activities
Factual Knowledge Recall information Tell - list - define – name – recall - identify

- remember – repeat – recognize
Comprehension Understanding of

communicated material
or information

Transform - change - restate – describe -
explain - interpret – summarize - discuss

Applicative Knowledge Apply basic rules and
conventions

Add – subtract – punctuate – edit – divide
– multiply – diagram

Procedural Knowledge Complete tasks using
multi-step processes

Apply – investigate - produce

Analysis Breaking down
information into its
parts

Analyze - dissect – distinguish - examine -
compare - contrast – survey - categorize

Synthesis Putting together ideas
into a new or unique
product

Create – invent – compose – construct -
design - produce – modify

Evaluation Judging the value of
materials or ideas based
on set standards or
criteria

Judge - decide – justify – evaluate -
critique - debate – verify – recommend

Higher-Order Thinking Apply analysis,
syntheses and
evaluation processes to
solve complex problems

Evaluate - create – conduct – analyze

Attitudes and Values Express feelings,
opinions, personal
beliefs regarding
people, objects and
events

Respect – demonstrate – express

Social Behaviors Learned behavior that
conforms to acceptable
social standards

Perform – communicate

Motor Skills Physical coordination,
strength, control, skills
related to physical tasks

Demonstrate - run – dribble - move - show

Table 10: ACM TYC Taxonomy of Learning Processes

