
Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 1 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

Movie
Character

Hero

Superhero

Good Guy

Villain

Monster

Bad Guy

PREREQUISITE

Prior to completing this lab, students should have a basic knowledge of Java
inheritance and related terminology. It is assumed that students will have
previously created a simple class hierarchy which included a superclass with
one or more subclasses.

SUMMARY

One of the four major principles of object-oriented programming (OOP) is
inheritance. This lab will focus on the principle of inheritance and its potential
impact on developing secure code.

Inheritance provides a way to develop class hierarchies whereby new objects
can take on the properties of existing objects. There are several benefits of inheritances. For example,

 Reusability – subclasses can use methods defined in a superclass eliminating duplication of code

 Extensibility – subclasses can extend a superclass to expand capabilities of the parent class

 Data hiding – a superclass can control access/modification to its data from other classes and subclasses

RISK

If a class inheritance structure is not designed well, the objects, data, and methods it supports can be vulnerable
to malicious attacks. For example,

 a subclass can be created or extended with unauthorized access to data and methods in a superclass

 a subclass can override a method in a superclass class to provide unauthorized access to data or
methods in the superclass

GUIDELINES AND RECOMMENDATIONS FOR INHERITANCE AND EXTENSIBILITY

The following guidelines and guidance materials address secure coding relative to inheritance and extensibility.
Students are encouraged to read through this material.

Secure Coding Guidelines for Java SE

 Guideline 4 Accessibility and Extensibility
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

ACM Computer Science Curricula 2013

 Knowledge area: PL – Programming Languages – Core Tier 1 and Core Tier 2
(Secure coding topics to include in computer science curriculum)
http://www.acm.org/education/CS2013-final-report.pdf

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.acm.org/education/CS2013-final-report.pdf

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 2 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

OVERVIEW OF TOPIC

Inheritance is the process of deriving a new class (referred to as a subclass or child class) from an existing class
(referred to as a superclass or parent class). The subclass “inherits” properties (data) and activities (methods)
from its superclass.

In Java, each of the data members and methods in a class definition, including classes using inheritance, can be
qualified with an access modifier. The following access modifiers are available:

Access
Modifier

Accessible by the

current class

Accessible in the

same package
(subclasses and
other classes)

Accessible to

subclasses

located in

other packages

Accessible to

classes
located in

other packages

public

Yes Yes Yes Yes

protected

Yes Yes Yes No

no modifier
(default or also called

package-private)
Yes Yes No No

private

Yes No No No

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 3 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

The stacked Venn diagram for Class A in the previous figure visually illustrates increasing accessibility for the
Java access modifiers. For example, the private modifier is the most restrictive (only available to the current
class in which it is defined) and the public modifier is the least restrictive (available to all external classes and
subclasses).

When inheritance is designed and implemented properly it controls/limits access to the data and methods
within its classes. The first objective of this lab is to learn more about using Java access modifiers with class
members and the impact they have on inheritance and secure coding. This exercise will explore the protected
access modifier. (A different secure code lab focuses on the public, private, and package-private modifiers.)

Java also has a non-access modifier, final, that controls/limits the ability of a class to be extended, a method to
be overridden, and an instance variable to be modified. For example,

 On a class header, the class cannot be extended
o An example: public final class SomeFinalClass { … }

 On a method header, the class cannot be overridden
o An example: public final void someFinalMethod() { … }

 On a declaration of an instance variable, the value for the variable cannot be modified
o An example: public final double SOME_CONSTANT_NUMBER = 145.8231495;

A second objective of this lab is to learn more about using the Java final modifier to limit class extensibility and
to restrict select methods from being overridden.

LABORATORY REVIEW

1. Research and study the concept of inheritance. You may find it useful to review Java textbooks you have

used in the past. There are a host of webpages and online videos which illustrate this concept. Pay
attention to access modifiers (public, protected, package-private, and private). Review the non-access final
modifier.

2. Accompanying this assignment is a compressed file named InheritanceExample.zip which contains the
following files:

 Box.java

 StorageBox.java

 DepositBox.java

 BoxDriver.java

 NewBox.java

Save the ZIP file on your computer, unzip, and open the Java files in the IDE/editor that you use to compile
and run Java.

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 4 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

3. Inheritance and the protected access modifier with DATA MEMBERS :

a. Open and review the Box class in your preferred IDE for Java. The protected access modifier used
with the instance variables in the class (lines 16-18 for height, length, and width) provides direct
access to these variables by any subclass of Box. This means a subclass does not need to use a
method to read or modify these data items. This can create security vulnerabilities. Compile this
class.

b. Open the DepositBox class. Notice this is a child class of Box. Review the code so that you
understand the class definition. Compile the class.

c. Open the StorageBox class. Notice this is a child class of Box. Review the code so that you

understand the class definition. Compile the class.

d. Open the BoxDriver class. This class has several instantiations from the Box, StorageBox, and
DepositBox classes. All are a part of the Box class hierarchy. Take your time to review the
BoxDriver code to understand it. Notice the following objects:

 simpleBox is a Box object.

 pizzaBox is a StorageBox object.

 jewelryBox is a StorageBox object.

 companyDepositBox is a DepositBox object instantiated with a specified size, box number,
and number of objects placed in the box.

 personalDepositBox is a DepositBox object instantiated without a size. It will default to a
size of 4x24x10. It does not have an assigned box number and the number of items in the
box defaults to zero.

Compile and run BoxDriver. Pay attention to the output and compare it to the code from the
classes so that you fully understand the Box class structure.

e. Let’s look at security vulnerabilities in this structure. Open the NewBox class. This is an empty child
class of Box. Add the following constructor starting on line 18 and compile the class. Notice this
code is directly accessing height, length, and width which are data members defined in Box:

public NewBox()

{ height = -4.0f;

 length = 10.5f;

 width = 12.12f; }

f. Open the BoxDriver class. Add the following NewBox instantiation on line 28:

 NewBox boxProblem = new NewBox();

Add the following statement on line 38 to display the data from the boxProblem object:

 System.out.println("boxProblem: \n" + boxProblem + "\n");

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 5 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

Compile and run BoxDriver. Notice the output for the
boxProblem object (the last set of data on the right):

The child class, NewBox, was coded to directly update data in the
parent class, Box. This code was even able to assign an invalid
negative value (-4.0) to height.

In this example, through inheritance a new child object was
created and was able to read, modify, and inject invalid data into
an object from the parent class. The protected modifier on the
data members in the parent class permitted this.

There may be an occasional situation when it is desirable for a
child class to have direct access to a parent’s data. If so, data
validation should be performed on new values before they are used to update inherited data.
However, there are many circumstances where a child class should not be allowed to directly
update a parent’s data and by doing so introduces security vulnerabilities, such as the one just
illustrated.

g. In the Box class, change the access modifier on the three instance variables (height, length, and
width) from protected to private. Compile Box. Run BoxDriver again.

You will receive an IllegalAccessError exception due to the attempt to directly access a private field.
Access was denied to the private data members (height, length, and width) in Box from newBox.
This is one way of securing direct access to an object’s data from a child class.

Limit the use of the protected access modifier on data members to situations when there is a
compelling reason to do so. As a general rule, consider using the private access modifier for data
members. Provide access to the data, if needed by a subclass, through the parent’s protected
accessors and/or mutators.

4. Inheritance and the protected access modifier with METHODS :

a. Change the NewBox constructor to the following so that
NewBox is now using mutators to update data members in a Box
object:

public NewBox()

{ setHeight(-4.0f);

setLength(10.5f);

 setWidth(12.12f); }

Compile NewBox. Run BoxDriver again. You will no longer
receive an exception because you are using public mutators
from NewBox. Sample output is shown to the right. Notice the
value for height under boxProblem (shown on the right). The
mutator for height performs input validation on its argument

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 6 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

and resets height to 1.0 if an invalid value is passed to the mutator method. The developer could
just as easily have chosen to not change height at all if the input is invalid. The point is the mutator
did not allow the data member to be updated with invalid data. NewBox, in its present state, must
use the mutators in Box to modify the parent class data.

When designing classes, make sure the methods you create perform input validation on method
parameters.

b. Attackers exploit vulnerabilities found in inheritance class structures. For example, review the
methods in the Box class. Every method in Box has public access meaning any class can use these
methods. Any class can use the mutators to modify an object’s data. Any class can use the
accessors to read the object’s data.

Consider the mutators in Box. Once a box is instantiated, does it make sense to allow the
dimensions of the box to be modified? If not, it would be more secure to delete the mutators in Box
to prevent unwanted modifications to its data members.

c. For the purposes of this example and to later demonstrate issues with overriding methods, we will
allow child classes to modify the dimensions of a box.

Change the access modifier for the mutators in Box from public to protected as shown below:

 protected void setHeight(float height)

 { if (height > 0) this.height = height; }

 protected void setLength(float length)

 { if (length > 0) this.length = length; }

 protected void setWidth(float width)

 { if (width > 0) this.width = width; }

Compile Box and run BoxDriver to insure you have not introduced an error in the classes.

5. Impact of the final non-access modifier on inheritance:

a. Add the following method to the NewBox class toward the end of the class in the “other methods”

section on line 3:

public float getVolume()

{ setHeight(-3);

 setLength(9999999999999999999999999999999.0f);

 setWidth(getHeight()/getLength());

 return (getHeight() * getLength() * getWidth()); }

 This code overrides the getVolume() methods in the Box class. While it still returns the volume of
the box, notice how it also uses protected mutator methods to modify the data members. Compile
the NewBox class.

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 7 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

Add the following code to the BoxDriver class on line 39:

System.out.println("boxProblem volume: \n" +

boxProblem.getVolume() + "\n");

System.out.println("boxProblem: \n" + boxProblem + "\n");

Compile and run BoxDriver. Your output will be similar to
what is illustrated to the right.

Look at the boxProblem height, length, width, and volume.
The height, length, and width values were modified using the
mutators and the volume was calculated using the new
values.

The mutator methods’ access modifiers in Box are protected
and the getVolume() method is public.

Using similar techniques, attackers gain access to an object’s
data by creating a new child class which overrides a parent
method. Initially, you may contemplate changing the access
modifier on the getVolume() method to protected in Box. Try
it. Compile the Box class and rerun the BoxDriver class.

The same results are produced! Nothing was gained by changing the getVolume() access modifier
to protected. A protected method allows subclasses to use the method while it restricts non-
subclasses from using it. For this example, external classes may need to know the volume of a box
in which case this would not be a desirable approach.

In this specific example as presently defined, any child class of Box can override its methods and
thus presents security vulnerabilities. What can be done?

b. Java has access modifiers and non-access modifiers. The final non-access modifier can help secure
data and methods from accidental or intentional modification.

 Using final on a variable prevents the variable’s value from being changed and thus creates
a constant.

 Using final on a method header prevents a method from being overridden by a subclass.

 Using final on a class header prevents a class from being subclassed (restricts inheritance).

Update the Box class by modifying the getVolume() method header to the following:

public final float getVolume()
NOTE: protected was changed to public and final was added.

Compile Box. Compile NewBox. You will now receive a VerifyError preventing NewBox from
overriding the getVolume() method.

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 8 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

Using the final modifier will prevent subclasses from overriding methods in the superclass. This is
one effective technique to prevent attackers from extending a class, overriding methods, and
accessing and/or modifying class data.

When designing an inheritance class structure, restrict overriding methods unless there is a
compelling reason to do so. For subclasses at the lowest level in the hierarchy, restrict further
subclasses unless there is a compelling reason for doing so (make the class final).

c. Consider the other methods in the Box class. Are there any methods which are not needed? For
example, do you really need the mutators? Once a box is created, would you need to modify its
dimensions? Or would you just instantiate another box with the new dimensions?

For this example, delete the three mutator methods named setHeight(), setLength(), and setWidth()
in the Box class.

d. The accessors are defined as public so that any class using the Box class (or its child classes) can
retrieve the dimensions of the box. However, you would not want a child class to override these
methods and add malicious code to the method. Add the final modifier to the three accessor
method headers getHeight(), getLength(),and getWidth() in the Box class.

Compile Box.
Delete the two methods in the NewBox class and compile.
Compile BoxDriver and run the application.
Everything should run fine now and the Box class should be more secure.

To make the entire class structure more secure, you should consider similar changes to the other
classes in the structure.

LABORATORY ASSIGNMENT:

1. Accompanying this assignment is a compressed file named InheritanceExample which contains the following

files:
o Employee.java – Parent class
o EmployeePayInfo – Child class of Employee which contains sensitive payroll information
o HourlyEmployee – Child class of EmployeePayInfo
o SalariedEmployee – Child class of EmployeePayInfo
o EmployeePayroll – A driver class which runs and displays payroll information for all employees

Save the ZIP file on your computer, unzip, and open in the files in the IDE/editor that you use to compile and
run Java.

2. Compile all of the files. Run EmployeePayroll. Study the classes to make sure you understand this
inheritance structure. Consider the security vulnerabilities in these Java classes. Think about new child
classes that could be created from this structure. Think about input validation. Think about sensitive data
and encryption needs.

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 9 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

3. Print each of the Java files. Complete the following checklist and actions for Employee, EmployeePayInfo,
HourlyEmployee, and SalariedEmployee (using your printouts):

Secure Coding Vulnerabilities: Improper Inheritance Structure

Complete the following actions using a printed copy of a Java class.
Place a check beside each box as the task is completed.

Locate vulnerabilities in data members (instance variables and constants):

 Place a  beside each data member with private access.
 Write V1 beside each data member with public, protected, no access modifier.

Locate vulnerabilities in methods:

 Place a  beside the method header of each method that does not return a value and does not update any data
member’s value.

 Write V2 beside the method header of each method that returns the value of a data member. These methods
are often called accessors or getters.

 Write V3 beside the method header of each method that modifies the value of data members. These methods
are often called mutators or setters.

 Write V4 beside the method header of each method not using the final modifier. These methods can be
overridden in child classes.

 Mark V5 beside the class header if this is class at the “bottom” of the class hierarchy (currently has no child
classes).

 Write P beside the method header of each method (including constructors) that uses a parameter list. All
parameters should be validated to ensure they fall within the bounds of the method’s intended purpose. For
each parameter, write V5 over the argument first appearance in code.

Eliminate vulnerabilities where feasible:

 For data members marked with V1: Consider changing the access modifier to private. Unless there is a
compelling reason, each data members should be declared using the private access modifier to protect it from
direct access and/or manipulation from outside classes. Mark any changes you made on your program listing.

 For methods marked with V2: Review the instance variable being accessed. Seriously consider whether or not an
accessor (method which returns a data member’s value) is needed for this data item. Secure coding guidelines
recommend avoiding accessors when possible. Strike-through the method header for each accessor method
that you recommend deleting from the class you are reviewing. If there are instance variables which you
believe should have an accessor, further consider the sensitivity of that data item. Write E (for encryption)
beside the method header for any accessor that you recommend using encrypting before returning a data
member’s value to another class.

 For methods marked with V3: Review each instance variable and its associated mutator(s) (methods which
modify the value of an instance variable). Seriously consider whether or not each mutator is needed. Do not
include a mutator for each instance variable unless there is a compelling reason to do so. Strike-through the
method header for each mutator method that you recommend deleting from the class you are reviewing.

 For each method (including constructors) marked with a P: Review the method’s code for each use of the
parameter to ensure the parameters value is validated before it is used in further statements. For any parameter
that is not validated, write code on the program listing that will validate the parameter’s value and handle invalid
data properly.

Bluegrass Community and Technical College
Computer & Information Technologies

Secure Coding – Extensibility through Inheritance in Java

 10 This is a secure coding laboratory exercise in a

series of 6 labs prepared by Prof. Cindy S. Tucker

DISCUSSION QUESTIONS:

1. In general terms, describe the security vulnerabilities you found in the following classes:

o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

2. Describe any changes you recommend to the modifiers (access modifiers and the final modifier) for data
members for:

o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

3. Describe any changes you recommend to the modifiers (access modifiers and the final modifier) for
methods for:

o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

4. Describe any changes you recommend to the modifiers (access modifiers and the final modifier) for the class
headers for:

o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

5. Describe input validation you suggest for methods in (be specific):
o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

6. Describe any encryption suggestions you have for the following classes (be specific):
o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

7. Describe any methods or data you recommend removing (with an explanation) in the following classes:
o Employee
o EmployeePayInfo
o HourlyEmployee
o SalariedEmployee

DELIVERABLES:
 Submit the answers to the Discussion Questions as directed by your instructor.
 Modify the classes per your suggestions, zip the 5 classes together and submit the compressed file as

directed by your instructor.

