

Computing Curricula 2009:

Guidelines for Associate-Degree

Transfer Curriculum in Computer Science

ACM

Two-Year College

Education Committee

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

1

The ACM Two-Year College Education Committee

Elizabeth K. Hawthorne, Committee Chair

Union County College

Robert D. Campbell

Graduate Center, City University of New York

Karl J. Klee

Alfred State College

Anita Wright

Camden County College

This report is available for viewing and download at: http://www.acmtyc.org/

Copyright © 2009 by ACM and IEEE Computer Society.

All rights reserved.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

2

CONTENTS

Chapter 1: Overview

 Section 1.1: Glossary of Terms

 Section 1.2: Two-Year College Environment

 Section 1.3: Articulation

 Section 1.4: The Sub-Disciplines Of Computing

 Section 1.5: ACM Computing Ontology

 Section 1.6: Baccalaureate Program Guidelines

 Section 1.7: Accreditation

 Section 1.8: Program Accreditation

 Section 1.9: Transfer Programs

 Section 1.10: Career Programs

 Section 1.11: Ethics And Professionalism

 Section 1.12: Security in the Computing Curricula

 Section 1.13: Core Computing Courses

 Section 1.14: Assessment

 Section 1.15: Teaching And Learning Strategies

 Section 1.16: Computing Laboratory Experiences

 Section 1.17: General Education

 Section 1.18: Mathematics

 Section 1.19: Natural Sciences

 Section 1.20: Computing for Other Disciplines

 Section 1.21: Internationalization

Chapter 2: Program Description

 Section 2.1: Computer Science Associate-Degree Transfer Program

Chapter 3: Course Inventory

 Section 3.1: Computing Courses

 Section 3.2: Engineering Courses

 Section 3.3: Mathematics Courses

Appendix A: Customized Bloom’s Taxonomy

Appendix B: References

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

3

CHAPTER 1: OVERVIEW

SECTION 1.1: GLOSSARY OF TERMS

The ACM Two-Year College Education Committee defines the following terms in relationship to

curricula associated with computing education in associate-degree granting institutions.

Associate Degrees are well-defined and meaningful completion points at the conclusion of two-

year degree programs; such degrees are awarded by two-year, community or technical

colleges, as well as some four-year colleges.

Career Programs are specifically designed to enable students to pursue entry into the

workforce after two years of college studies; these are typically Associate of Applied Science

(AAS) degree programs.

Computing is now recognized as comprised of five defined sub-disciplines: computer science,

computer engineering, software engineering, information systems and information technology.

Transfer Programs are specifically designed for students intending to matriculate into the

junior year of a four-year program; these are typically Associate of Arts (AA) or Associate of

Science (AS) degree programs.

SECTION 1.2: TWO-YEAR COLLEGE ENVIRONMENT

According to the American Association of Community Colleges, approximately one-half of all

undergraduates in the United States are enrolled in community colleges, and more than half of

all first-time college freshman attend community colleges. “Community colleges are centers of

educational opportunity. They are an American invention that put publicly funded higher

education at close-to-home facilities, beginning nearly 100 years ago with Joliet Junior College

[in Joliet, Illinois]. Since then, they have been inclusive institutions that welcome all who desire

to learn, regardless of wealth, heritage, or previous academic experience. The process of

making higher education available to the maximum number of people continues to evolve”

(http://www.aacc.nche.edu/).

The two-year college environment is uniquely positioned, resulting from the threefold mission

of these institutions to provide a learning environment for:

 transfer into baccalaureate programs;

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

4

 entrance into the local workforce; and

 lifelong learning for personal and professional enrichment.

In addition, many two-year colleges are drivers of local economic development, providing

workforce development and skills training, as well as offering noncredit programs ranging from

English as a second language to skills retraining to community enrichment programs or cultural

activities.

Two-year colleges serve high school graduates proceeding directly into college, workers

needing to upgrade skill sets or master new ones in order to re-enter the workforce,

immigrants seeking to become integrated into the local culture and master a new language,

individuals leaving the workplace to engage college-level coursework for the first time,

returning students with college degrees who have decided to pursue an alternate career path,

and many individuals in need of ongoing training and skill updating. This diversity is addressed

in numerous ways, including targeted career counseling, remediation of basic skills, specialized

course offerings, individualized instruction and attention, flexible scheduling and delivery

methodologies, and a strong emphasis on retention and successful completion. Furthermore,

because two-year colleges have less restrictive entrance requirements, faculty must be

prepared to instruct students exhibiting a broad range of academic preparations, aptitudes, and

learning styles. The mission of two-year college faculty is to focus their full-time attention on

effective pedagogy for educating a diverse student population, remaining current in their

discipline and in the scholarship of teaching and learning, and fostering student success.

Two-year, community or technical colleges, as well as certain four-year colleges, award

associate degrees to students completing two years of study. These associate-degree programs

are complete in their own right, whether designed specifically to enable graduates to transfer

into the upper division of a baccalaureate program or to gain entry into the workforce. These

institutions also offer certificate programs, intended to be fulfilled in less time than a complete

degree program; such programs are often designed for targeted student audiences and focused

on specific content.

At the earliest opportunity, faculty and academic advisors must help each student determine

which type of program best serves the student’s educational and career goals. Such

considerations include the distinctions between certificate, career and transfer programs, the

academic requirements of each, and the associated employment options. Career-oriented

associate degree programs provide the specific knowledge, skills, and abilities necessary to

proceed directly into the workplace, while transfer-oriented programs provide the academic

foundation and pathway to continue a program of study at a four-year college or university.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

5

SECTION 1.3: ARTICULATION

Articulation is a key consideration in associate-degree programs which are designed as transfer

curricula. Articulation of courses and programs between academic institutions is a process that

facilitates transfer by students from one institution to another. The goal is to enable students

to transfer in as seamless a manner as possible. Efficient and effective articulation requires

accurate assessment of courses and programs as well as meaningful communication and

cooperation. Both students and faculty have responsibilities and obligations for successful

articulation. Ultimately, students are best served when educational institutions establish well

defined articulation agreements that actively promote transfer.

Articulation agreements often guide curriculum content as well, and are important

considerations in the formulation of transfer-oriented programs of study. Institutions are

encouraged to work collaboratively to design compatible and consistent programs of study that

enable students to transfer, in the United States from associate-degree programs into

baccalaureate-degree programs, and in other countries from post-secondary colleges into

universities. A two-year college must develop transition and articulation strategies for the

colleges and universities to which its students most often transfer, recognizing that it may be

necessary to modify course content to facilitate transfer credit and articulation agreements. A

program of study must also take into consideration the general education requirements at both

the initial college and the anticipated transfer institution. Faculty must ensure that they clearly

define program goals, address program learning outcomes, and evaluate students effectively

against defined course outcomes. Articulation agreements should specify one or more well-

defined exit points for students to matriculate from the post-secondary college to the transfer

institution. In turn, faculty at the receiving institution must provide any transitional preparation

necessary to enable transfer students to continue their academic work on par with students at

their institution. Hence, students must expect to complete programs in their entirety up to

well-defined exit points (e.g., completion of a defined course sequence or program) at one

institution before transferring to another institution; one cannot expect articulation to

accommodate potential transfers in the middle of a carefully designed curriculum. Acting on

these considerations, all post-secondary institutions of higher education will foster student

success and best serve their students’ academic and career aspirations.

Many associate-degree granting institutions have established articulation (“2+2”) agreements

between their associate degree career programs and corresponding high school programs. For

example, many two-year colleges award up to 12 credit hours toward an associate degree to

students who complete the Cisco Networking program in high school. Similarly, community

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

6

colleges may award up to 12 college credits toward an associate degree for high school

students passing the Certified Internet Web Professional examination.

SECTION 1.4: THE SUB-DISCIPLINES OF COMPUTING

The Association for Computing Machinery currently categorizes the overarching discipline of

computing into five defined sub-disciplines: computer science, computer engineering, software

engineering, information systems and information technology. The ACM Two-Year College

Education Committee describes these disciplines as follows:

Computer Science … involves design and innovation developed from computing principles. This

four-year curriculum focuses on the theoretical foundations of computing, algorithms, and

programming techniques, as applied to operating systems, artificial intelligence, informatics

and the like. Upon graduation, students initiating careers as computer scientists should be

prepared to work in a broad range of positions involving tasks from theoretical work to

software development.

Computer Engineering … involves the design and construction of processor-based systems

comprised of hardware, software, and communications components. This four-year curriculum

focuses on the synthesis of electrical engineering and computer science as applied to the design

of systems such as cellular communications, consumer electronics, medical imaging and

devices, alarm systems and military technologies. Upon graduation, students initiating careers

as computer engineers should be able to design and implement systems that involve the

integration of software and hardware devices.

Software Engineering … involves the design, development and testing of large, complex, and

safety-critical software applications. This four-year curriculum focuses on the integration of

computer science principles with engineering practices as applied to constructing software

systems for avionics, healthcare applications, cryptography, traffic control, meteorological

systems and the like. Upon graduation, students initiating careers as software engineers should

be able to properly perform and manage activities at every stage of the life cycle of large-scale

software systems.

Information Systems … involves the application of computing principles to business processes,

bridging the technical and management fields. This four-year curriculum focuses on the design,

implementation and testing of information systems as applied to business processes such as

payroll, human resources, corporate databases, data warehousing and mining, ecommerce,

finance, customer relations management, transaction processing, and data-driven decision-

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

7

making and executive support. Upon graduation, students initiating careers as information

systems specialists should be able to analyze information requirements and business processes

and be able specify and design systems that are aligned with organizational goals.

Information Technology … involves the design, implementation and maintenance of technology

solutions and support for users of such systems. This four-year curriculum focuses on crafting

hardware and software solutions as applied to networks, security, client-server and mobile

computing, web applications, multimedia resources, communications systems, and the

planning and management of the technology lifecycle. Upon graduation, students initiating

careers as information technology professionals should be able to work effectively at planning,

implementation, configuration, and maintenance of an organization’s computing infrastructure.

For each, the ACM Two-Year College Education Committee presents a specific curriculum, with

associated commentary about the unique considerations and distinguishing aspects of the

program outcomes, teaching and learning strategies and coursework pursuant to the nature of

the computing sub-discipline being studied.

SECTION 1.5: ACM COMPUTING ONTOLOGY

The computing sub-disciplines have much in common as well as distinguishing characteristics.

The ACM “Ontology Project” was launched in order to organize and identify these

commonalities and distinctions in a formal manner; the goals of this project are:

 to represent the entirety of the computing and information-related sub-disciplines

together;

 to provide a mechanism for easy update of the information in a timely way;

 to illustrate the differences and the overlaps of the various sub-disciplines that address

these topics; and

 to describe fully the various topics and subtopics of interest to educators and

researchers in any of the sub-disciplines concerned with computing and the

management and processing of information.

The ontology classifiers can be applied at the course-topic level to assist in identifying content

commonalities beyond shared course requirements.

SECTION 1.6: BACCALAUREATE PROGRAM GUIDELINES

The professional societies of the ACM, the IEEE Computer Society, the Association of

Information Technology Professionals and the Association for Information Systems have a

history of collaborating on computing materials for higher education. These organizations have

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

8

jointly produced significant volumes of curricular recommendations and guidelines for

baccalaureate and graduate computing programs; these volumes are referred to as the ACM

Computing Curricula series. Likewise, the ACM Two-Year College Education Committee has

produced a corresponding set of curricular guidelines that provide similar guidance for

associate-degree granting institutions, in a manner that fosters inter-institutional cooperation

and student articulation. This report provides discussion on transfer considerations and

discussion on articulation.

SECTION 1.7: ACCREDITATION

Regional institutional accreditation is common among the associate-degree granting

institutions in the United States. Such accreditation is intended to promote public confidence

that institutions are maintaining a defined level of educational excellence, as validated by

quality assurance and improvement through a rigorous process of peer evaluation. Under this

process institutions are assessed and accredited in whole, with each component of the college

or university contributing to a shared mission, as evidenced by comprehensive measures of

institutional effectiveness and holistic assessment of defined student outcomes. In a university

setting, individual colleges or schools (for example, in fields such as business, medicine,

dentistry, etc.) may be accredited by associations that specialize at that particular level.

SECTION 1.8: PROGRAM ACCREDITATION

Program accreditation, as distinguished from regional institutional accreditation and school

accreditation, has long been available for particular disciplines in associate-degree granting

institutions, including programs such as electrical technology, mechanical technology and

construction technology (and of course notably in health-related fields). Even associate-degree

granting institutions not pursuing specific program accreditation often take pride in the

placement and subsequent success of their graduates into the upper division of accredited

baccalaureate programs. Curricular guidelines have frequently taken into consideration

program accreditation standards. While the relationship between accrediting criteria and

curricular guidelines should be a symbiotic one, inasmuch as they have the mutual goal of

sound student preparation in the discipline, the criteria for program accreditation do not

necessarily directly impact curricular guidelines given that the accrediting criteria and curricular

guidelines arise from differing sources. Accreditation is also closely associated with

assessment.

Sources of information on accreditation include the United States Department of Education, the
Council for Higher Education Accreditation, and the American Association of Community
Colleges. Some specific agencies accrediting associate-degree programs include:

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

9

 ABET, formerly the “Accreditation Board for Engineering and Technology”, which

through its Computing Accreditation Commission and Technology Accreditation

Commission accredits postsecondary degree-granting programs housed within

regionally accredited institutions.

 The Accrediting Commission of Career Schools and Colleges of Technology, which
promotes the development of a highly trained and competitive workforce through
quality career oriented education.

 The Accrediting Council of Independent Colleges and Schools, which accredits programs
designed to educate students for professional, technical, or occupational careers,
including those that offer those programs via distance education.

 The National Association of Industrial Technology, which accredits industrial technology
programs in colleges, universities, and technical institutes.

SECTION 1.9: TRANSFER PROGRAMS

Typically associate-degree programs fall into two categories: those designed for transfer into

baccalaureate-degree programs and those designed to prepare graduates for immediate entry

into career paths. Colleges should make students aware at the onset of their studies of the

distinctions between career and transfer programs, the academic requirements of each, and

the resultant employment options. Transfer-oriented associate-degree programs rely on

formal inter-institutional articulation agreements to ensure that students experience a

seamless transition between lower division associate-degree coursework and upper division

baccalaureate-degree coursework. Articulation of courses and programs between two

academic institutions facilitates the transfer of students from one institution to the other.

Faculty and students alike have responsibilities and obligations to achieve successful

articulation.

Efficient and effective articulation requires a close evaluation of well-defined course and

program outcomes as well as meaningful communication and cooperation. For example, a

particular course in one institution might not be equivalent to a single course at a second

institution; however, a group or sequence of courses could be determined equivalent to

another course grouping or sequence. Faculty must ensure that they clearly define program

requirements, address program goals in a responsible manner, and assess students effectively

against defined standards. When specifying points of exit within the articulation agreement

document, faculty at the transferring institution must provide sufficient material to prepare

students to pursue further academic work at least as well as students at the second institution.

It is not uncommon for students to complete an associate-degree program of study, choose to

work for a period of time, and then return to college to pursue their upper division studies for

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

10

career advancement. (And many employers will provide tuition reimbursement for workers

who wish to continue toward a baccalaureate degree.) Because of the ever evolving nature of

computing, students must be aware that course content and program requirements are

updated frequently, potentially subjecting them to new program requirements and revised

articulation agreements. Students are best served when sequences of courses are completed

as a unit at one institution due to the comprehensive and conceptual nature of the computing

and mathematics content. Hence, students should complete programs of study in their entirety

up to well-defined exit points at one institution before transferring to another institution;

articulation cannot be expected to accommodate potential transfers in the middle of a well-

defined and recognized body of knowledge. Therefore, the ACM Two-Year College Education

Committee strongly recommends that the entire CS I – CS II – CS III core course sequence be

completed at the same educational institution.

Academic institutions are advised to work collaboratively to design compatible and consistent

programs of study that enable students to transfer easily from associate-degree programs into

baccalaureate-degree programs. In support of this goal, the ACM provides curricular guidelines

for both associate- and baccalaureate-degree programs in computer science, computer

engineering, software engineering, information systems and information technology.

SECTION 1.10: CAREER PROGRAMS

Typically associate-degree programs fall into two categories: those designed to prepare

graduates for immediate entry into career paths and those designed for transfer into

baccalaureate-degree programs. Colleges should make students aware at the beginning of

their studies of the distinctions between career and transfer programs, the academic

requirements of each, and the resultant employment options. Students graduating from a

career-oriented associate-degree computing program will typically enter the work force directly

upon graduation.

Career-oriented associate-degree programs provide students with the specific knowledge, skills

and abilities necessary to proceed directly into employment in a targeted work environment.

 The program of study will include professional development coursework as well as courses that

emphasize communication skills, mathematical reasoning and other general education

requirements. The degree granted upon completion of a career-oriented program is typically

an Associate in Applied Science. In addition, many students will augment their formal studies

with technical certifications to enhance their immediate employability.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

11

 The following factors support the viability of a career-oriented associate-degree program and

help ensure the success of students in the workplace:

 An active industry advisory committee consisting of prospective employers,

providing guidance concerning the knowledge, skills, and abilities students must

possess to enter directly into a career within their community.

 Real-world work experience including co-op programs, internships and other

practicum activities, with an emphasis on professional practices.

 Core and elective coursework as recommended by advisory committees.

 Integration of technical, communication and time-management skills, team projects,

and other interpersonal skills that prepare the student for a business working

environment.

 Potential articulation paths that enable the career-oriented student to pursue a

baccalaureate degree in the future after working for some period of time.

 Assessment processes whereby students can earn credit for relevant experience.

It is important to note that a career-oriented associate-degree program is not intended to

facilitate transfer into a baccalaureate program, but rather to provide entry into a career that

requires specialized post-secondary skills and an advanced level of expertise and education.

Nevertheless, many students graduating from career-oriented programs subsequently select to

further their education at the baccalaureate level (frequently with employer tuition assistance

plans).

The ACM, through its Two-Year College Education Committee, provides curricular resources for

associate-degree career-oriented programs in a variety of computing disciplines.

SECTION 1.11: ETHICS AND PROFESSIONALISM

Professional, legal and ethical issues are important elements in the overall curricula for

computing disciplines, and must be integrated throughout the programs of study. This context

should be established at the onset and these matters should appear routinely in discussions

and learning activities throughout the curriculum. The ACM Code of Ethics notes that “When

designing or implementing systems, computing professionals must attempt to ensure that the

products of their efforts will be used in socially responsible ways, will meet social needs, and

will avoid harmful effects to health and welfare.” The Code goes on to provide an excellent

framework for conduct that should be fostered beginning early in students’ experiences.

As computing technologies become ubiquitous in society, ethical behavior and adherence to

codes of conduct for computing professionals is imperative; therefore, careful consideration of

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

12

legal, ethical, and societal issues involving computing, the Internet and databases are essential

to the education of computing professionals. Students who realize the potential uses and

abuses of technology will, as citizens, be able to contribute to public policy debate from a

knowledgeable perspective on issues such as property rights and privacy concerns that affect

everyone.

 Computer systems have substantial social impact in nearly every setting including applications

such as healthcare, finance, transportation, defense, government, education, and

communications; real-time and safety-critical systems typically have acceptable margins of

error close to nil. Developers and support technologists of such computing systems are

confronted by challenges regarding choices and tradeoffs in the design, implementation, and

maintenance of these systems. Engaging students in the consideration of the ethical aspects

for such decisions as well as giving them practice in identifying and weighing the ethical issues

enables them to make more judicious choices. It is crucial that students pursuing computing

careers be made aware of and properly equipped to handle the complexities of professional

judgments; as computing professionals, graduates must follow codes of conduct and take

responsibility for their actions and be accountable for the systems that they develop and

support.

SECTION 1.12: SECURITY IN THE COMPUTING CURRICULA

Whether referred to as “computer security”, “information security”, “information assurance” or

some other heading, curriculum content in creating and maintaining secure computing

environments is a critical component in all associate-degree computing programs. Almost

every career path open to a computing student encompasses some aspect of security. System

administrators and engineers must be able to properly design, configure and maintain a secure

system; programmers and application developers must know how to build and configure secure

software systems from the bottom up; web specialists must be capable of assessing risks and

determining how best to reduce the potential impact of breached systems; user support

technicians must be knowledgeable in security concerns surrounding desktop computing; and

project managers must be able to calculate the cost/benefit tradeoffs involved with

implementing secure systems.

It is the responsibility of faculty to ensure that students are well prepared for the security

challenges they will inevitably encounter in their careers as computing professionals. This can

be addressed by way of a variety of implementation strategies. One approach that some

associate-degree computing programs offer is a host of individual courses on specific security

topics. This approach can provide a wealth of content opportunities for specialization but may

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

13

create scheduling challenges for many students as it runs the risk of students graduating

without having taken sufficient electives to achieve the understanding of the security concepts

necessary to function in their professional roles. Another approach is to fully integrate and

incorporate fundamental security topics into core computing courses in the program of study

with specialized courses reserved for targeted settings; this is the approach promoted by the

ACM Two-Year College Education Committee in its computing curriculum resources. The

Committee also advocates strongly for learning activities that require students to actively

demonstrate mastery of the tenets of professional conduct, ethical and responsible behavior

and appreciation for security matters in a holistic manner.

SECTION 1.13: CORE COMPUTING COURSES

Among the associate-degree transfer programs, the Computer Science I-II-III coursework

provides a common “core” body of knowledge in computing. The complete course sequence is

designed in such a manner that students progress in knowledge, proficiency and professional

maturity in several specific areas, including software engineering principles and professional

and ethical conduct.

 The progression of software engineering topics across CS I-II-III originates in CS I, where there is

an emphasis on using a cyclic approach for program development by iterating through

designing, coding, and testing program modules. Complemented by algorithm analysis,

students are encouraged to think abstractly about problems and to begin developing processes

for decomposing problems into organized parts. Encouraging clear documentation, good

naming conventions and consistent secure coding style contribute to a disciplined approach to

writing programs.

The progression of software engineering topics across CS I-II-III continues in CS II, where greater

emphasis is placed on abstraction and sound software design principles, engaging students in

the development of secure software components that solve a wide range of related problems

and can be reused. The students determine the necessary elements of simple ADTs (such as a

counter or a date) and then construct them; by their very nature, these components must be

well-documented to encourage reuse. Additionally the students write assertions such as pre-

conditions and post-conditions describing each class method, thereby encouraging students to

think deeply about a simple problem before coding. After coding, the components must be

well-tested, and therefore the use of test plans and test drivers are practiced. These activities

reinforce the notion of constructing software from well-defined, independent pieces and

complement the study of using existing library classes and APIs in software solutions.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

14

The progression of software engineering topics across CS I-II-III concludes in CS III, where

students are asked to step beyond the programmer role and take a broader view of software

development; to consider its lifecycle from problem description to maintenance. Students first

practice with analysis and design of medium-sized systems. Standard modeling tools are

introduced and the students complete the phases of analysis, design, implementation and

testing of a medium-sized team project that includes documents such as UML diagrams or CRC

cards in addition to test plans. Students consider design patterns and write applications using

data structures and templates. The software engineering topics are integrated with

professionalism and ethics, as well as software and information assurance topics, such as

security concerns and liabilities of computer-based systems.

The progression of the emphasis on professional and ethical conduct across CS I-II-III originates

in CS I, where the curriculum is designed to consider the historical context of computing and

programming as well as examining issues involving ethical conduct; plagiarism, intellectual

property and software piracy issues are presented. Typically, students’ requirements for

submitting original work as well as college policies regarding the use of computing resources

and acceptable computing behavior on campus and the Brookings Institute “10

Commandments of Ethical Computing” can be used as relevant discussion starters.

The progression of the emphasis on professional and ethical conduct across CS I-II-III continues

in CS II, which builds upon this foundation by examining societal issues, the Internet, and

professionalism. Now that the students have gained some experience with developing

programs, they can begin to see “what can go wrong” and the possible consequences to the

user of their program, at a personal level, such as infinite loops and program crashes.

Additionally, students are confronted with broader implications by design considerations

regarding databases and data accessibility; ethical concerns regarding personal data, privacy

and property rights should be explored Integrating these topics with the software development

process, security issues, and relevant cases of software errors will help students recognize that

their work can have individual as well as societal consequences and encourage them to think

carefully about the design and implementation of their programs.

The progression of the emphasis on professional and ethical conduct across CS I-II-III concludes

in CS III, where a broader view is presented – encompassing computing sciences as a

profession. Standards of professional behavior, organizations and publications are examined as

well as a variety of occupational roles in the computing field. Course content materials

presenting case studies of significant software failures amplify the topics of risks and liabilities.

The students should start to recognize that invariably software production involves ethical

choices. Incorporating these topics with the software lifecycle, engineering, human factors, and

software assurance considerations will help students internalize the significance of professional

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

15

and ethical behavior and subsequently demonstrate it through their individual and group

projects.

These progressions can be summarized based on course content Topic Headings and can also

be mapped to the ACM Computing Ontology Topic Classifiers used in the computing ontology.

CS Core Sequence Topics

CS I

Topic Headings

CS II

Topic Headings

CS III

Topic Headings

ACM Computing

Ontology Topic

Classifiers

Social and historical

context of

computing

Ethical conduct Professionalism Ethical Social; History

Computing

Programming

languages

Event-driven

programming

 Programming Languages

IDE and software

tools

 Programming Languages

Fundamental

programming

constructs

Intermediate

programming

constructs

Recursion Programming

Fundamentals;

Programming Languages

Machine level

representation of

data

 Computer Hardware

Organization

Fundamental

algorithms &

problem-solving

Intermediate

computing

algorithms

Formal

computing

algorithms

Algorithms Complexity;

Discrete Structures

 Object-oriented

design &

modeling

Software reuse Conceptual Modeling;

Information Topics

Object-oriented

principles

Object-oriented

programming

 Programming Languages;

Fundamental Data

Structures

Intermediate

data structures

Canonical data

structures

Programming Languages;

Algorithms Complexity;

Secure code Software

assurance

Software and

information

assurance

Security Topics

Overview of

operating systems

 Computing & Network

Systems

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

16

Human-computer

interaction

Human-computer

interaction

Human-computer

interaction

User Interface; Graphics,

Visualization, Multimedia

 Simple database

integration

 Information Topics

Program

development

Software

development

Software

engineering

Software Engineering

 Basic algorithmic

analysis

Algorithms Complexity

 Algorithmic

strategies

Algorithms Complexity

SECTION 1.14: ASSESSMENT

Institutions must ensure an ongoing and effective process for assessing student learning. In

particular, computing courses and programs of study must incorporate clearly defined,

measurable student outcomes which demonstrate that student achievement at the course level

promotes successful attainment of program goals.

This relationship is demonstrated when:

 for each program of study a collection of program outcomes is identified;

 for each course in the program a collection of student learning outcomes is identified;

 for each course, topics of study and learning activities are selected and designed to

support the course student outcomes;

 each course student outcome supports one or more program outcomes; and

 each program outcome is supported by one or more course outcome.

Effective assessment provides valuable feedback to faculty and academic leaders for

continuous improvement of pedagogy, course content and program outcomes, in order to

better prepare students for future studies and careers. In addition, effective assessment

fosters articulation between institutions and promotes student transfer, and documents

employment readiness and facilitates job placement. Accreditation requirements,

performance-based funding and public demands for accountability also make effective

educational assessment a necessity.

Avenues for assessing the success of an associate-degree program might include:

 institutional or program accreditation

 student performance-based measurements

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

17

 industry advisory councils

 program completion rates for students

 job placement rates for students

 post-transfer success by students

 student success rates on certifying examinations

For an in-depth tutorial of program assessment see

http://online.bc.cc.ca.us/courseassessment/.

SECTION 1.15: TEACHING AND LEARNING STRATEGIES

It is important to engage students’ innate interests early in their academic careers to cement

their commitment to computing, to further student retention, and to motivate achievement in

their coursework. In addition to specific program content, curriculum designers must give

consideration to learning activities, instructional techniques and student success. There are

specific techniques that can be incorporated that reflect the nature of the work of computing

professionals. Activities should be designed so that students learn to work in teams and in the

context of projects, gain insights into the real-world setting and associated considerations, see

both theory and application, and appreciate the role of foundation material in setting the stage

for intermediate topics.

Faculty at two-year colleges must remain aware of the importance of incorporating professional

practices and applied work as an integral part of all computing programs. Computing students

should be encouraged to:

 work in teams;

 use techniques of task and time management;

 solve practical problems in course projects;

 make presentations;

 confront issues of privacy, confidentiality and ethics;

 use current technology in laboratories;

 attain real-world experience through cooperative education, internships, and/or other

practicum activities; and

 participate in student chapters of computing societies and organizations.

Increasingly, the area of computing has become critical to the operation of many organizations.

Colleges should ensure that students are familiar with the nature of this field and the

expectations of the workplace. An active industry advisory committee is an important asset in

helping faculty incorporate current professional practices into the curriculum. Computing

employees must demonstrate professionalism and ethical behavior, adhere to codes of

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

18

conduct, safeguard confidentiality, and respect privacy. They must take responsibility for their

actions, be accountable to the organization, understand the impact of their work on others, and

demonstrate effective and efficient work practices. This field also demands that professionals

engage in an ongoing process of professional growth and development to ensure that their

skills and abilities remain current with ever-changing technology. Faculty know that a conscious

and proactive incorporation of professional practices into a computing curriculum benefits

students, either as a valuable component in a transfer-oriented program, or in addressing

industry needs for qualified personnel as they exit a career-oriented program.

SECTION 1.16: COMPUTING LABORATORY EXPERIENCES

The computer laboratory experience is an essential part of the computing curriculum, either as

an integral part of a course or as a separate stand-alone course. Such experiences should start

very early in the curriculum, when students are often motivated by the “hands-on” nature of

computing. Introductory laboratories should be designed and conducted to reinforce concepts

presented in lecture classes and homework. Students should be provided many opportunities

to observe, explore and manipulate characteristics and behaviors of actual devices, systems,

and processes. Every effort should be made by instructors to create excitement, interest and

sustained enthusiasm in computing students. Many associate-degree granting institutions will

be familiar with strong lab-based learning activities, drawing on years of experience with

programs such as electronics technology and industry-provided networking curricula.

Numerous colleges have long recognized that experiences such as survey courses in

engineering often engage students in stimulating activities that peak their interests and set the

stage for career choices in such fields. These colleges will find that they can leverage existing

facilities, resources and faculty expertise in implementing computing programs.

SECTION 1.17: GENERAL EDUCATION

Associate-degree programs are subject to general education requirements which mandate that

students complete a minimum number of courses spanning a variety of major discipline

categories. Such requirements vary among states, institutions and the type of associate degree

being pursued (e.g., AAS, AA, or AS). Colleges must ensure that degree programs include the

courses appropriate to fulfill all general education and related requirements arising from

institutional and state mandates, as well as regional institutional accreditation guidelines.

Categories of general education courses typically include: mathematics and quantitative

reasoning; natural sciences; English and oral communication; cultural and diversity studies,

humanities and the arts; world languages; social and behavioral sciences; health and physical

education.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

19

Programs best serve the students by requiring them to take general education courses that

provide a social context for their overall education. Today’s world is one of rapid change

requiring routine interaction on a global scale with individuals of diverse cultures and

languages, and placing a much greater emphasis on interpersonal skills. Students should

engage courses as part of their overall program of study that assist them in preparing for this

world; in like fashion, such perspectives should be widely incorporated into numerous courses

across many disciplines.

Effective abilities in oral and written communication are of critical importance to computing

professionals; these skills must be established, nurtured and incorporated throughout a

computing curriculum. Students must master reading, writing, speaking, and listening abilities,

and then consistently demonstrate those abilities in a variety of settings: formal and informal,

large group and one-on-one, technical and non-technical, point and counter-point. Many of the

skills found in a technical writing course often benefit a computing curriculum (these include

learning to write clearly and concisely; researching a topic; composing instructions, proposals,

and reports; shaping a message for a particular audience; and creating visuals). Overall,

student learning activities should span the curriculum and should include producing technical

writing and report writing, engaging in oral presentations and listening activities, extracting

information from technical documents, working in a group dynamic, and utilizing electronic

media and modern communication techniques.

SECTION 1.18: MATHEMATICS

A strong foundation in mathematics provides the necessary basis for associate-degree transfer

programs in computing. This foundation must include both mathematical techniques and

formal mathematical reasoning. Mathematics provides a language for working with ideas

relevant to computing, specific tools for analysis and verification, and a theoretical framework

for understanding important concepts. For these reasons, mathematics content must be

initiated early in the student’s academic career, reinforced frequently, and integrated into the

student’s entire course of study. Curriculum content, pre- and co-requisite structures, and

learning activities and laboratory assignments must be designed to reflect and support this

framework. Many students enter two-year colleges with insufficient mathematics preparation

for a computing program. Such students must devote additional semesters to achieve the

mathematical maturity and problem-solving skills required to be successful in computing

coursework.

The concepts established in a course on Discrete Structures are foundational material for
computer science, and for that reason such coursework must be completed early in the

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

20

program of study. The Discrete Structures course described herein includes requisite concepts
in set theory, induction, recursion, logic, graph theory, and combinatorics, and uses the notion
of formal mathematical proof as a unifying theme. These concepts are critical to the study of
data structures and algorithms in the CS I - CS II - CS III course sequence. This foundational
course can be taught very successfully by computer science faculty with appropriate
qualifications; in this manner, the content can be presented from the computing perspective,
with examples and assessment activities tailored to that perspective as well. The discrete
structures concepts also serve as underpinnings for advanced computer science topics. For
example, an ability to create and understand a formal proof is essential in formal specification,
in verification, and in cryptography; professionals use graph theory concepts in networks,
operating systems, and compilers and set theory concepts in software engineering and in
databases.

The theoretical concepts of the calculus are required for the study of efficiency of algorithms
and the notion of Big-O; for that reason the Calculus I course must be completed concurrently
with CS III and the study of data structures. The Calculus I course described herein includes the
foundational concepts of limits, functions, and upper and lower bounds necessary to
understanding asymptotic analysis. Mathematics faculty typically teach this course, intended
for engineering, science or mathematics majors. For computer science majors, the ability to
think abstractly and to generate software solutions of mathematical models for real world
scenarios is enhanced through the study of the calculus. The principal strategies in software
development – formal approaches to solving problems and reusable techniques – underlie the
calculus coursework as well.

SECTION 1.19: NATURAL SCIENCES

Rigorous laboratory science courses such as physics, chemistry and biology provide students

pursuing associate-degree transfer programs in computing with content knowledge, direct

hands-on laboratory experiences and strong training in the tenets of the “scientific method”.

The scientific method (summarized as formulating problem statements and hypothesizing,

designing and conducting experiments, observing and collecting data, analyzing and reasoning,

and evaluating and concluding) reasonably presents a basic methodology for much of the

discipline of computing; it also provides a process of abstraction that is vital to developing a

framework for logical thought. Learning activities and laboratory assignments found in

computing courses should be designed to incorporate and reinforce this framework.

Furthermore, advisors should guide students intending to transfer into a baccalaureate

program (immediately or as a long-term goal) to select specific science coursework appropriate

to that objective. Science courses can provide important content for distinct specializations

within computing disciplines; such considerations will vary by institution based on program

design and resources. Program requirements of this nature can provide students with a crucial

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

21

foundation should they later pursue computing careers in those scientific domains (for

example, bioinformatics).

SECTION 1.20: COMPUTING FOR OTHER DISCIPLINES

Computing technology has become an integral part of every field of study and every profession.

Therefore, an institution must consider the means by which its computing curricula can also be

responsive to the needs of “computing for other disciplines”. The groundbreaking 1993 report

Computing Curricula Guidelines for Associate Degree Programs in Computing for Other

Disciplines, produced by the ACM Two-Year College Education Committee, provided the first

formal set of recommendations identifying courses that a computing department could offer

for students in other disciplines.

As our information-oriented and technology-enabled society has moved forward, the need for

individuals in fields outside computing to learn not only about the application of technology but

also about its fundamental principles has increased dramatically. From managing and mining

large collections of intellectual property to developing enhanced consumer products to creating

works of art, ever-increasing access to computing power and facility with applications software

can still fall short without knowledge about underlying systems and insights into the

foundational concepts involved.

No single prescription can be given for a set of courses to meet the computing needs of

students in other disciplines. Mathematics majors may be interested in learning about

computer programming; nursing majors may be interested in information security; and

engineering majors may have a need to learn about the Linux operating system. However,

computing faculty can identify courses in their computing curricula that may be accessible –

with the necessary prerequisite requirements fulfilled – and may be suitable – based on course

design and student learning outcomes – for students in other fields and settings. The courses

suitable for computing for other disciplines are noted in the ACM Two-Year College Education

Committee computing course inventory.

SECTION 1.21: INTERNATIONALIZATION

The ACM Two-Year College Education Committee computing curricula resources provide

meaningful guidance for two-year post-secondary (“tertiary”) higher education programs both

locally within the United States and globally throughout the world.

The American Association of Community Colleges (AACC) has established an Office of
International Programs and Services whose stated goals are “to advocate the community

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

22

college role in global education among key constituencies, nationally and internationally, to
advance global exchanges and partnerships between member colleges and international
entities, and to promote intercultural understanding and engagement among students, faculty,
staff, and decision makers.” James McKenney, AACC Vice-President for Economic Development
and International Programs, spoke as early as 2002 in a reflective interview titled “The Global
Linkage” appearing in the journal “US Society and Values” about the rapidly expanding
phenomenon of “community colleges”, “two-year technical colleges”, and the “two-year
structure” in general throughout Europe, the Americas and Asia.

This phenomenon has since been reported on, promoted and codified in any number of
publications and resources. For example, the Council for Industry and Higher Education (CIHE)
and The Mixed Economy Group in England have prepared a comprehensive report titled
“Higher Education and Colleges: A Comparison Between England and the USA”. The United
Nations-affiliated Institute of International Education provides a wealth of resources regarding
post-secondary and higher education around the world, including activities of institutions akin
to the two-year colleges of the United States. The Paris-based Organization for Economic
Cooperation and Development (OECD) provides background information, analyses and
recommendations for “opportunities for education in the years after compulsory schooling”
across Europe, as does the Directorate-General for Education and Culture of the European
Commission. The “University World News” and the “World Education News and Reviews”
publications are sources of current events worldwide in post-secondary education; the
Community College Research Center at Columbia University also provides links to such
documentation. The Association of Canadian Community Colleges (ACCC) offers a wealth of
information on two-year colleges in Canada. The Ministry of Education of the People’s Republic
of China describes institutions similar to community colleges in its discussion on “2 to 3-year
higher vocational education with the emphasis on high-level professional technical talents.”

Clearly then curricular guidance for computing programs found in the first two years of a post-

secondary higher education setting has the potential for global impact. The ACM Two-Year

College Education Committee computing curricula resources provide a strong foundation for

such programs, by defining specific content in a structured format, describing meaningful

pedagogy and measureable student learning outcomes, and detailing rubrics for effective

assessment of student learning. While some specific implementation aspects of these

resources may be more relevant or prominent in the United States the resources are useful and

sound, readily applicable to numerous settings and easily adapted to a wide variety of

implementation strategies.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

23

CHAPTER 2: PROGRAM INVENTORY

SECTION 2.1: COMPUTER SCIENCE

Program Title: Computer Science

Program Type: Transfer

Program Baccalaureate Report(s): http://www.acm.org/education/curricula-recommendations

Program Overview

The foundation for the Computer Science associate-degree transfer program is the three-

course computing sequence CS I - CS II - CS III. This sequence should be accompanied by the

opportunity for additional computing courses based on a variety of factors, including transfer

requirements, institutional specializations, and student interests.

Past computer science model curricula have identified at least three “paradigms” or approaches

that one could take to computer science content: objects-first (centered on object-oriented

programming), breadth-first (an initial holistic view subsequently progressing deeper), and

imperative-first (centered on procedural programming). The Computer Science associate-

degree transfer program now calls for a blended approach:

 Object-oriented programming is emphasized in CS I, but not necessarily early in the

semester.

 The topics of algorithms and fundamental programming constructs are important

components of CS I and are consistent with the Böhm-Jacopini theory for procedural

programming.

 The breadth-first approach is used in the coverage of three important topics: ethics and

professionalism, security, and software engineering principles.

These topics are covered in ever-deeper fashion as the student progresses through CS I-II-III.

Course content on software engineering principles is prominent in the Computer Science

associate-degree transfer curriculum. An essential tenet of software engineering is ensuring a

disciplined, controlled approach to software evolution and reuse. The principles of software

engineering progress in the CS I-II-III course sequence from an initial focus on program

development to software development and then to broader software engineering concerns.

Security topics are covered in deeper and deeper fashion as the student progresses from CSI to

CSII to CS III. In CS I, students use encapsulation to incorporate privacy into their applications.

In CS II, students use security-aware exception handling to help prevent buffer overflows,

memory leaks and back-door accesses. In CS III, students develop and ensure robust attack-

resistant code by testing applications for known security flaws.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

24

Similarly, the course content across CS I-II-III forms a natural progression for the topics of social

awareness, ethics, privacy and legal concerns, and professionalism. The first course (CS I)

begins by examining the historical context of computing and ethical conduct, focusing on

individual behaviors. The second course (CS II) follows by considering the societal impacts of

computing and the Internet and encouraging students to recognize the direct and far-reaching

effects of their work and behaviors. Culminating in the third course (CS III), the students begin

internalizing the importance of professional and ethical behavior through their project

activities, team interactions, and exposure to professional organizations and publications; the

goal is to help the students begin to view themselves as ethical software developers.

In addition to the CS I-II-III core sequence, a collection of additional “intermediate” courses are
identified providing a variety of paths of study and serving local considerations. These courses
also add specific content to the Computer Science program of study, including a focused
emphasis on security (the Essentials of Computing Security course), preparation for future
study in software engineering (the Introduction to Software Engineering course), and –
importantly – an opportunity early on (via the one-credit Survey of Computing Disciplines
course) for students to make informed decisions about their anticipated career plans and the
selection of a curriculum to pursue.

The theory of concurrent programming and synchronization, as it relates to operating systems
(mutual exclusion, semaphores, deadlock, race conditions), is covered in the Computer
Organization and Architecture course. The application of concurrency in programming
(threads) is covered in the Computer Science III course. The theory of running threads
concurrently using multiple processor cores or concurrently on parallel computers is covered in
the Hardware Fundamentals course and the Programming Languages course.

Students are best served by completing the three-course sequence CS I - CS II - CS III, together

with additional intermediate computing courses to be determined by the local institution

based on the requirements of transfer institutions, expertise of the faculty, and availability of

hardware and software. With these additional intermediate computing courses, students will

be better prepared to transfer successfully into the upper division of a baccalaureate degree

program and will have acquired a reasonable level of understanding in the various subject areas

that define the discipline, as well as develop an appreciation for the interrelationships among

these areas.

The Computer Science associate-degree transfer program includes a minimum of two terms of
mathematics preparation: Discrete Structures and Calculus I; articulation agreements between
baccalaureate institutions and associate-degree institutions may define additional mathematics
requirements. It is often the case that students who enter a two-year college intending to
pursue computer science have insufficient mathematics preparation; such students should be

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

25

counseled to complete a rigorous pre-calculus course in their first semester of study. This
preparation will enable these students to engage the CS I course simultaneously with their
mathematics studies, and to remain on schedule to graduate in four semesters.

The Computer Science associate-degree transfer curriculum represents the program course
configuration appropriate to the United States. In the first term (typically a semester, but in
alternative learning environments perhaps a different timeframe), students begin their
computer science core sequence, have the opportunity to prepare themselves (as needed)
mathematically, and address general education requirements. In terms two and three,
students continue the computer science core sequence, complete the required mathematics
courses, and continue addressing general education coursework. Terms three and four provide
an opportunity for intermediate computer science courses or additional mathematics
preparation; such courses must be selected based on student interests, transfer requirements
and articulation agreements.

Program Outcomes

Student learning outcomes that are clearly defined and effectively assessed are essential at the

course level to ensure that students are progressing meaningfully through a program of study.

Similarly, well-defined student outcomes are crucial at the program level to ensure that

graduates are well equipped to master coursework upon transfer to the upper division.

Furthermore, well defined course and program outcomes are essential tools in developing

effective articulation agreements.

Group 1: Critical Thinking, Problem Solving, and Theoretical Foundations

Upon successful completion of the Computer Science associate-degree program, a student will

have demonstrated:

A. An ability to apply knowledge of computing and mathematics appropriate to the

discipline.

B. An ability to think critically and apply the scientific method.

C. An ability to analyze a problem and craft an appropriate algorithmic solution.

D. An ability to design, implement and evaluate an appropriate and secure computer-

based system, process, component, or program to satisfy required specifications.

Group 2: Communication and Interpersonal Skills

Upon successful completion of the Computer Science associate-degree program, a student will

have demonstrated:

A. An ability to read and interpret technical information, as well as listen effectively to,

communicate orally with, and write clearly for a wide range of audiences.

B. An ability to function effectively as a member of a team to accomplish common goals.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

26

Group 3: Professionalism and Ethics, Social Awareness and Global Perspective

Upon successful completion of the Computer Science associate-degree program, a student will

have demonstrated:

A. An ability to engage in continuous learning as well as research and assess new ideas and

information to provide the capabilities for lifelong learning.

B. An ability to exhibit professional, legal and ethical behavior.

C. An ability to demonstrate social awareness, respect for privacy and responsible conduct.

D. An ability to analyze the global impact of computing on individuals, organizations, and

society.

These program outcomes can be summarized as shown below. For each outcome, the table

below also identifies the underlying support provided by the CS I-II-III core sequence and by the

foundational mathematics courses called for in the curriculum.

Program Outcomes and Supporting Coursework

Program

Outcomes

Group I

Critical Thinking,

Problem Solving, and

Theoretical

Foundations

Group 2

Communication

and

Interpersonal

Skills

Group 3

Professionalism and Ethics,

Social Awareness and Global

Perspective

Program

Learning

Outcome

1. A 1.B 1.C 1.D 2.A 2.B 3.A 3.B 3.C 3.D

 CS I X X X X X X X X

CS II X X X X X X X X X

CS III X X X X X X X X X X

Discrete

Structures

X X X X X

Calculus I X X X X

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

27

Program Coursework

The coursework called for by these guidelines includes a core CS sequence, as well as

foundational mathematics content. These courses have fundamental sequential (pre-requisite)

relationships as well as parallel (co-requisite) relationships. These relationships can be

summarized as noted in the table below.

Foundational coursework sequencing

Term 1 Term 2 Term 3

Term
4

COMPUTER SCIENCE
COURSES

Computer Science I Computer Science II Computer Science III

MATHEMATICS
COURSES

Pre-calculus
(if needed)

Discrete Structures Calculus I

In addition to the core foundational coursework, the curriculum must include general education

courses and support (or “elective”) courses. These courses are outlined in a typical four-

semester schedule as noted in the table below.

Program Course Sequencing

Semester 1 Semester 2

Computer Science I Computer Science II

Pre-Calculus Discrete Structures

Survey of Computing Disciplines General Education

General Education General Education

English I English II

Semester 3 Semester 4

Computer Science III Computer Science course

Calculus I Mathematics course

Computer Science course

Computer Science course

Engineering Course

Mathematics course

Computer Science course

Engineering Course

Natural Science I Natural Science II

General Education General Education

The non-specified courses in Computer Science and Engineering should be selected from the
computing and engineering courses appearing in the Course Inventory in Chapter 3.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

28

CHAPTER 3: COURSE INVENTORY

SECTION 3.1: COMPUTING COURSES

Course Title: Computer Science I

Course Description: This course is the first in a three-course sequence that provides students

with a foundation in computer science. Students develop fundamental programming skills

using a language that supports an object-oriented approach, incorporating security awareness,

human-computer interactions and social responsibility.

Course Prerequisite(s):

 Computer fluency (no previous programming or computer science experience

expected);

 Precalculus-ready (that is, proficiency sufficient to enter college-level precalculus

course)

 English Composition I – ready (that is, proficiency sufficient to enter college-level

English I course)

Course Co-requisite(s):

Course Minimum Contact Hours: 42 (recommended hours per topic heading identified below)

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Topics:

 Historical context of computing (1hour): history of computing ideas, computing, and
programming;

 Ethical conduct (1 hour): codes of ethics and responsible conduct; intellectual
property, copyright, and plagiarism; “Ten Commandments for Computer Ethics”

 Programming languages (1 hour): comparison of object-oriented, procedural,
functional programming

 Software tools and IDE (2 hours): compiling, interpreting, linking, executing, testing
and debugging

 Fundamental programming constructs (11 hours): basic syntax and semantics of a
higher-level language; variables (scope and lifetime), types, expressions, and
assignment; self-documentation; standard and file I/O; conditional and iterative
control structures; structured decomposition; pseudo-random number generator

 Machine level representation of data (1 hours): overview of the storage of
instructions, numbers and characters in a Von Neumann machine

 Fundamental algorithms and problem-solving (6 hours): problem-solving strategies;
the role of algorithms in the problem-solving process; implementation strategies for
algorithms; debugging strategies; the concept and properties of algorithms

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

29

 Object-oriented principles (6 hours): abstraction, objects, classes, methods,
parameter passing, encapsulation, inheritance, polymorphism

 Fundamental data structures (6 hours): primitive types, arrays, records, strings,
references

 Secure code (2 hours): data encapsulation; information hiding and integrity; strict
data typing

 Overview of operating systems (1 hour): role and purpose of operating systems;
simple file management

 Human-computer interaction (1 hours): sound design concepts and fundamental
graphical interface design; standard API graphics

 Program development (3 hours): program development phases, with emphasis on
design, implementation, and testing and debugging strategies

Course Student Learning Outcomes:

Upon successful completion of this course, the student will be able to:

 Choose professional behavior in response to ethical issues inherent in computing.

 Produce algorithms for solving simple problems and trace the execution of computer
programs.

 Compare and contrast the primitive data types of a programming language; describe
how each is stored in memory; and identify the criteria for selection.

 Apply the program development process to problems that are solved using
fundamental programming constructs and predefined data structures.

 Apply secure coding techniques to object-oriented programming solutions.

 Decompose a program into subtasks and use parameter passing to exchange
information between the subparts.

 Differentiates between object-oriented, structured, and functional programming
methodologies.

 Describe the language translation phases of compiling, interpreting, linking and
executing, and differentiate the error conditions associated with each phase.

CS I: Assessment Rubric for Student Learning Outcomes

Program
Outcome

Student Learning
Outcome

Approaches Goal Meets Goal Surpasses Goal

2a,3b,

3c, 3d

Choose
professional
behavior in
response to ethical
issues inherent in
computing.

Explains the
concepts of
intellectual
property,
plagiarism, and
software piracy.

Chooses to
respond
professionally to
ethical issues in
computing, such
as intellectual
property,
plagiarism, and
software piracy.

Values and
respects
intellectual
property, and
chooses to act
professionally.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

30

1a, 1c Produce
algorithms for
solving simple
problems and
trace the
execution of
computer
programs.

Defines the steps
necessary to
solve a
programming
problem.

Produces a
working
programming
solution for a
given algorithm.

Develops a generic
solution for an
algorithm that can
be used to solve a
range of related
problems.

1a, 2a Compare and
contrast the
primitive data
types of a
programming
language; describe
how each is stored
in memory; and
identify the criteria
for selection.

 Names the built-
in data types of
the programming
language.

Differentiates
among the built-
in data types and
explain when it is
appropriate to
choose one over
another.

Consistently
produces
programming
solutions with the
correct data types
implemented.

1a, 1b,

1c, 1d

 Apply the program
development
process to
problems that are
solved using
fundamental
programming
constructs and
predefined data
structures.

Summarizes the
phases of the
program
development
cycle.

With guidance
during the design
phase, produces
working code and
performs some
testing.

Develops a working
program solution
by implementing
design, coding, and
testing that
includes error
checking.

1a, 1b,

1c, 1d

Apply secure
coding techniques
to object‐oriented
programming
solutions.

Describes secure
coding
techniques of an
object-oriented
program, such as
public versus
private members,
data integrity,
and data typing.

Applies secure
coding
techniques to an
object-oriented
program.

Devises a fully
secure object-
oriented program.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

31

1a, 1c,

1d

Decompose a
program into
subtasks and use
parameter passing
to exchange
information
between the
subparts.

With guidance
translates a
problem into a
programming
solution with
subtasks.

With guidance for
program analysis
and design,
decomposes a
problem into
program
components that
share data.

Independently
analyzes a
problem,
formulates a
design strategy,
and decomposes a
problem into
program
components that
share data.

1a, 2c,

3a

Differentiate
between the
object‐oriented,
structured, and
functional
programming
methodologies.

Recognizes the
differences and
similarities of the
object-oriented,
structured, and
functional
programming
methodologies.

Differentiates
between the
object-oriented,
structured, and
functional
programming
methodologies.

Compares and
contrasts the three
prominent
methodologies of
object-oriented,
structured, and
functional
programming.

1a, 2a,

3a

Describe the
language
translation phases
of compiling,
interpreting,
linking and
executing, and
differentiate the
error conditions
associated with
each phase.

Defines the
programming
language terms of
compiling,
interpreting,
linking, executing,
and error
conditions.

Describes the
programming
language
translation
phases of
compiling,
interpreting,
linking, and
executing, and
explains the types
of errors
associated with
each phase.

Compares the
programming
language
translation phases
of compiling,
interpreting,
linking, and
executing, and
distinguishes the
error conditions
associated with
each.

Course Title: Computer Science II

Course Description: This course is the second in a three-course sequence that provides

students with a foundation in computer science. Students develop intermediate programming

skills using a language that supports an object-oriented approach, with an emphasis on

algorithms, software development, software assurance and ethical conduct.

Course Prerequisite(s): Computer Science I

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

32

Course Co-requisite(s): Discrete Structures

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Minimum Contact Hours: 42 (recommended hours per topic heading identified below)

Course Topics:

 Societal and Professional Issues (1 hour): computing and the Internet; social impact
of computing; privacy

 Object-oriented programming (7 hours): encapsulation and information-hiding;
inheritance; class hierarchies; polymorphism; abstract and interface classes

 Object-oriented design and modeling (5 hours): class constructors and destructors;
ADTs; reusable software components; APIs; modeling tools; class diagrams

 Intermediate programming constructs (3 hours): cohesion and decoupling;
assertions, including pre/post conditions and loop invariants; software reuse; self-
documentation

 Intermediate computing algorithms (5 hours): searching; sorting; recursive
algorithms; complexity of algorithms

 Intermediate data structures (7 hours): built-in; programmer-created; dynamic

 Event-driven programming (4 hours): graphics API; event creation; event-handling
methods; exception handling

 Human-Computer Interaction (2 hours): sound design concepts; interfaces between
people and technology

 Simple database integration (1 hour): database I/O; embedded SQL queries

 Software development (4 hours): software lifecycle; test case design; software tools;
characteristics of maintainable software; program code verification and data
validation

 Software assurance (3 hours): buffer overflows; memory leaks; malicious code;
unauthorized and back-door access; security-aware exception handling

Course Student Learning Outcomes:

Upon successful completion of this course, the student will be able to:

 Discuss significant trends and societal impacts related to computing, software and the
Internet

 Construct object oriented programming solutions for reuse, using ADTs that incorporate
encapsulation, data abstraction, and information hiding.

 Construct multiple-file or multiple-module programming solutions that use class
hierarchies, inheritance, and polymorphism to reuse existing design and code.

 Design and develop secure and fault-tolerant programs that mitigate potential security
vulnerabilities.

 Verify program correctness through the development of sound test plans and the
implementation of comprehensive test cases.

 Create programming solutions that use data structures and existing libraries.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

33

 Produce graphical user interfaces that incorporate simple color models and handle
events.

 Analyze the execution of searching and sorting algorithms.

CS II: Assessment Rubric for Student Learning Outcomes

Program
Outcome

Student Learning
Outcome

Approaches Goal Meets Goal Surpasses Goal

1a, 2a,

3b, 3c, 3d

Discuss significant
trends and societal
impacts related to
computing,
software, and the
Internet.

Explains how
databases and
the Internet can
impact privacy
and property
rights.

Discusses the
potential uses
and abuses of
data and the
consequences
of the loss of
privacy.

Practices ethical
behavior when
addressing
property rights and
privacy issues.

1a, 1b,

1c, 1d, 2a

Construct object
oriented
programming
solutions for reuse,
using ADTs that
incorporate
encapsulation, data
abstraction, and
information hiding.

Summarizes the
concepts of
encapsulation,
data abstraction,
and information
hiding and
explains how they
apply to object-
oriented
programming.

Organizes
programming
solutions that
include
encapsulation,
information
hiding, and data
abstraction.

Constructs
reusable software
components that
incorporate
encapsulation, data
abstraction, and
information hiding.

1a, 1b,

1c, 1d, 2a

Construct
multiple‐file or
multiple‐module
programming
solutions that use
class hierarchies,
inheritance, and
polymorphism to
reuse existing
design and code.

Describes when
inheritance and
the use of class
hierarchies is an
appropriate
design strategy

With guidance,
produces a
programming
solution using
inheritance and
polymorphism

Designs and
constructs a
programming
solution using the
features of
inheritance and
polymorphism
appropriately

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

34

1a, 1c,

1d, 2a,

3d

Design and develop
secure and
fault‐tolerant
programs that
mitigate potential
security
vulnerabilities.

Summarizes
important
characteristics of
software
assurance, such
as the elimination
of buffer
overflows,
memory leaks
and back-door
access.

Produces a
fault-tolerant
program using
the foundations
of software
assurance to
mitigate
potential
security
vulnerabilities.

Designs and
develops a secure
and fault-tolerant
programming
solution utilizing
principles of
software
assurance.

1a, 1b,

2a, 2b

Verify program
correctness
through the
development of
sound test plans
and the
implementation of
comprehensive test
cases.

Produces test
plans for object –
oriented
programming
solutions that
considers code
coverage.

Analyzes a
program and
devises a test
plan that
examines code
coverage and
develops test
cases for data
coverage.

Constructs a test
driver for code
coverage and
creates a formal
test plan choosing
comprehensive test
cases for data
coverage.

1a, 1b,

1c, 1d, 2a

Create
programming
solutions that use
data structures and
existing libraries.

Produces
programming
solutions that use
existing library
code.

Organizes
programming
solutions that
incorporate
appropriate
data structures
and pre-existing
code.

Designs and
develops
programming
solutions that use
data structures,
pre-existing
libraries, and
individual library
code.

1a, 1d Produce graphical
user interfaces that
incorporate simple
color models and
handle events.

Differentiates
between good
and bad design
concepts for
human-computer
interfaces.

Produces
programming
code of a
graphical user
interface that
utilizes a simple
color model
effectively and
efficiently
handles events
triggered by
user
interaction.

Develops
programming code
for a graphical user
interface that
incorporates the
concepts of good
HCI design.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

35

1a, 1b,

2a, 3a

Analyze the
execution of
searching and
sorting algorithms.

Describes the
execution trace
of one searching
algorithm and
one sorting
algorithm.

Analyzes the
execution of
various
searching and
sorting
algorithms.

Evaluates the
execution of
various searching
and sorting
algorithms
including a
recursive solution.

Course Title: Computer Science III

Course Description: This course is the third in a three-course sequence that provides students

with a foundation in computer science. Students develop advanced programming skills using a

language that supports an object-oriented approach, with an emphasis on data structures,

algorithmic analysis, software engineering principles, software and information assurance, and

professionalism.

Course Prerequisite(s): Computer Science II; Discrete Structures

Course Co-requisite(s): Calculus I

Course Type: Computer Course

Eligible for Computing for Other Disciplines? No

Course Minimum Contact Hours: 42 (recommended hours per topic heading identified below)

Course topics:

 Professionalism (1 hour): standards of professional behavior; professional computing
societies and publications; professional responsibilities and liabilities; ACM Code of
Conduct; career paths in computing

 Software engineering (4 hours): standard approaches and implementation tools for
analysis and design; software lifecycle stages, processes and documentation; Software
Process Maturity Scale

 Basic algorithmic analysis (3 hours): asymptotic analysis of upper and average
complexity bounds; best, average, and worst case behaviors; big O and little o notations;
standard complexity classes; empirical measurements of performance; time and space
tradeoffs; recurrence relations

 Algorithmic strategies (2 hours): brute-force; greedy; branch-and-bound; heuristics;
pattern matching; string/text

 Recursion (7 hours): recursive mathematical functions; divide-and-conquer, first-and-
rest, and last-and-rest strategies; backtracking; recursion with linked lists, trees and
graphs

 Canonical data structures (7 hours): stacks; queues; linked lists; hash tables; trees;
graphs

 Formal computing algorithms (8 hours): efficiency of various sorting and searching
algorithms; hashing; collision-avoidance strategies; binary search trees; depth- and
breadth-first traversals; shortest-path algorithms; minimum spanning tree; transitive
closure; topological sort

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

36

 Concurrency (2 hours): threads; scheduling, synchronization and timing; multi-threaded
programs

 Software reuse (3 hours): design patterns; parametric polymorphism (templates or
generics); code libraries; container classes and iterators

 Human-Computer Interaction (2 hours): universal principles; human-centered
considerations; usability testing and verification; design trade-offs; secure user
interfaces

 Software and Information Assurance (3 hours): conformance, trustworthiness, and
predictable execution testing; exception handling; engineering and security trade-offs;
risks and liabilities of computer-based systems; fault prevention in software lifecycle
stages; intentional and unintentional software security vulnerabilities

Course Student Learning Outcomes:

Upon successful completion of this course, the student will be able to:

 Practice the tenets of ethical and professional behavior promoted by professional
societies; accept the professional responsibilities and liabilities associated with
software development.

 Use standard analysis and design techniques to produce a team-developed,

medium-sized, secure software application that is fully implemented and formally

tested.

 Compare and contrast a range of searching and sorting algorithms and analyze time

and space efficiencies.

 Assess the appropriateness of using recursion to solve a given problem.

 Design and construct programming solutions using a variety of recursive techniques.

 Analyze the efficiency of recursive algorithms.

 Design and develop reusable software using appropriate data structures and

templates.

 Create effective, efficient and secure software, reflecting standard principles of

software engineering and software assurance.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

37

CS III: Assessment Rubric for Student Learning Outcomes

Program
Outcome

Student Learning
Outcome

Approaches
Goal

Meets Goal Exceeds Goal

2a, 2b,
3a, 3b,
3c, 3d

Practice the tenets of
ethics and
professional behavior
promoted by
computing societies;
accept the
professional
responsibilities and
liabilities associated
with software
development.

Studies the
tenets of ethics
and
professional
behavior
promoted by
international
computing
societies, such
as ACM and
IEEE-CS.

Practices the
tenets of ethics
and
professional
behavior
promoted by
international
computing
societies, and
recognizes the
liabilities
associated with
software
development.

Displays ethical
and professional
behavior
associated with
the
responsibilities of
software
development.

1a, 1b,

1c, 1d,

2a, 2b

Use standard analysis
and design
techniques to
produce a team‐
developed,
medium‐sized, secure
software application
that is fully
implemented and
formally tested.

 As part of a
team, produces
an executable,
medium-sized
software
application that
meets some
program
requirements
and includes
design
documentation
and some
evidence of
testing.

As part of a
team, produces
a working,
medium-sized
software
application on
time that meets
many program
requirements
including
design and
some test plan
documentation.

As part of a team,
successfully
develops a
medium-sized,
secure software
application on
time that meets
all program
requirements
including design
and formal test
plan
documentation.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

38

1a, 1b,

2a

Compare and
contrast a range of
searching and sorting
algorithms and
analyze time and
space efficiencies.

 Uses various
searching and
sorting
algorithms, and
investigates
time and space
tradeoffs.

Compares and
contrasts a
range of
searching and
sorting
algorithms for
time and space
efficiencies.

Critiques
searching and
sorting
algorithms,
including
recursive
solutions, for
various
algorithmic
efficiencies and
evaluates them in
terms of Big-O.

1a, 1b,

1c, 2a

Assess the
appropriateness of
using recursion to
solve a given
problem.

Explains the
utility of
recursion to
solve certain
problems.

Compares and
contrasts the
tradeoffs in
terms of
recursive and
non-recursive
solutions.

Justifies when to
choose a recursive
solution over a
non-recursive
solution (and vice
versa) in terms of
efficiency, Big-O,
and
comprehensibility.

1a, 1d Design and construct
programming
solutions using a
variety of recursive
techniques.

Converts a
simple
recursive
algorithm into a
working
recursive
method.

With guidance
develops
recursive
programming
solutions for
applications
that use data
structures such
as trees and
lists.

Independently
designs and
develops
recursive
programming
solutions for
applications that
use backtracking
and data
structures such as
trees and lists.

1a, 1b,

1c, 2a

Analyze the efficiency
of recursive
algorithms.

With guidance
interprets a
recursive
method.

Analyzes a
recursive
method and
correctly
predicts its
output.

Evaluates
recursive
algorithms in
terms of efficiency
and time and
space tradeoffs.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

39

1a, 1b,

1c, 1d,

2a, 2b

Design and develop
reusable software
using appropriate
data structures and
templates.

Differentiates
among the
classic data
structures and
selects a
suitable data
structure for
use in an
application

With some
guidance
designs and
develops
applications
using
appropriate
data structures
for a given
problem.

Independently
designs and
develops
applications using
appropriate data
structures and
incorporates
reusable software
components in
the solution.

1a, 1b,

1c, 1d,

2a, 2b,

3a, 3b,

3c, 3d

Create effective,
efficient and secure
software, reflecting
standard principles of
software engineering
and software
assurance.

Calculates the
risks and
liabilities of a
computer-
based solution
using standard
software
assurance and
engineering
principles.

Creates an
effective,
efficient and
secure solution,
utilizing
principles of
software
assurance and
software
engineering.

Judges the safety
and security of a
software solution.

Course Title: Algorithm Analysis and Design

Course Description: This course introduces formal techniques to support the analysis and

design of algorithms; focusing on both the underlying mathematical theory and practical

considerations of efficiency. Topics include: basic algorithmic analysis; fundamental algorithmic

strategies; graph and tree algorithms; automata theory; and introduction to language

translation.

Course Prerequisite: CS III

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? No

Course Title: Computer Organization and Architecture

Course Description: This course covers basic hardware and software structure; I/O and main

memory organization; internal representation of data; addressing methods; program controls;

microprocessor families; multiprocessors; concurrent programming and synchronization; and

RISC architectures.

Course Prerequisite: CS II

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

40

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Title: Hardware Fundamentals

Course Description: This course covers computer hardware components; I/O and

communication interfaces; maintenance and troubleshooting; component swapping; system

commands and utilities; memory managers; multi-core processors; and graphical user interface

software.

Course Prerequisite: none

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Title: Human-Computer Interaction

Course Description: This course covers the universal principles of interfaces between people

and technology; usability testing and verification; human-centered software development and

design trade-offs; design and programming of secure user interfaces; and gaming and

multimedia systems.

Course Prerequisite: CS II

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Title: Essentials of Computer Security

Course Description: This course covers the foundations of computing security: confidentiality,

integrity, availability, authentication and non-repudiation. Topics also include business

continuity and disaster recovery; ethics; digital forensics; security standards, regulatory

compliance and organizational policies; and risk management.

Course Prerequisite: none

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

41

Course Title: Introduction to Database Systems

Course Description: This course covers information models and systems; database query

languages; object-oriented and relational database design; transaction processing; distributed

databases; data modeling; normalization; and physical database design.

Course Prerequisite: CS I

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Title: Introduction to Software Engineering

Course Description: This course covers the basic principles and concepts of software

engineering; system requirements; secure programming in the large; modeling and testing;

object oriented analysis and design using the UML; design patterns; frameworks and APIs;

client-server architecture; user interface technology; and the analysis design and programming

of simple servers and clients.

Course Prerequisite: CS II

Course Co-requisite: CS III

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? No

Course Title: Linux Operating Environment

Course Description: This course introduces the concepts and features of the Linux operating

system. Topics include file management; application installation; scripting; system and network

configuration; kernel management; and an introduction to the LAMP (Linux, Apache, MySQL,

Perl/PHP/Python) web server infrastructure.

Course Prerequisite: CS II

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

42

Course Title: Programming Languages

Course Description: This course covers the fundamental concepts on which programming

languages are formulated and the execution models that support them. Topics include:

interpreting and compiling, formal descriptions of syntax and semantics; comparison of

programming paradigms; data types, type checking, scope and binding; inheritance; distributed

processing issues including exceptions and concurrency; and network programming.

Course Prerequisite: CS III

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? No

Course Title: Survey of Computing Disciplines

Course Description: This course is designed for students who intend to pursue a program of

study in computing. Topics include an overview of the computing disciplines: Computer

Science, Computer Engineering, Software Engineering, Information Systems, and Information

Technology; the technical and professional preparation required for a variety of computing

careers; workplace experiences; licensing and certification; as well as current and future trends

in computing.

Course Prerequisite: none

Course Co-requisite: none

Course Minimum Contact Hours: 14

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Course Title: XML-Enabled Technologies

Course Description: This course covers core XML-enabled applications and technologies for

data exchange on the web. Topics include: creating well-formed XML documents; using

namespaces; validating XML with DTDs and schemas; manipulating data using DOM and SAX;

CSS and transforming XML documents with XSLT using XPATH; AJAX applications; XML

databases; and Web Services using SOAP.

Course Prerequisite: CS II

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Computer Course

Eligible for Computing for Other Disciplines? Yes

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

43

SECTION 3.2: ENGINEERING COURSES

Course Title: Digital Logic Circuits with Lab

Course Description: This course covers the foundations of microprocessor design and

execution. Topics include number systems and two’s-complement arithmetic; Boolean algebra;

logic design; gates; flip-flops; registers; sequential circuits; control mechanisms; timing; data

and control flow in a typical computer. These topics are supported and reinforced with hands-

on laboratory activity designed to enhance the understanding and proper use of selected

principles from digital logic circuit theory.

Course Prerequisite: CS I and Discrete Structures

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Engineering Course

Course Title: Circuit Analysis with Lab

Course Description: This course covers DC resistive circuits; Kirchhoff's Laws; Nodal and Mesh

emphasis; sources; Thevenin's and Norton's theorems; RC, RL and RCL circuit solutions; and

sinusoidal steady state solutions. These topics are supported and reinforced with hands-on

laboratory activity designed to enhance the understanding and proper use of selected

principles from circuit analysis.

Course Prerequisite: Calculus II; Physics I

Course Co-requisite: none

Course Minimum Contact Hours: 42

Course Type: Engineering Course

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

44

SECTION 3.3: MATHEMATICS COURSES

Course Title: Calculus I
Course Description: This course is the first in the calculus sequence designed for the
engineering, science, or mathematics major. Topics include functions and limits, techniques
and applications of differentiation, indefinite and definite integrals, and applications of
integration.
Course Prerequisite: Precalculus with Trigonometry
Course Co-requisite: none
Course Minimum hours: 56
Course Type: Mathematics Course

Course Title: Discrete Structures
Course Description: The course covers mathematical topics essential for work in computer
science. Topics include: number bases, mathematical induction, sets, relations, functions,
congruence, recursion, combinations and permutations, probability, graphs, trees, logic,
Boolean algebra, and proof techniques. Computing related problems and examples are
integrated throughout the course.
Course Prerequisite(s): Pre-calculus
Course Minimum Contact Hours: 42 (hours per course topic are suggested below)
Course Type: Mathematics Course

Course Topics:
 Number bases (1 hour): binary, hexadecimal.
 Mathematical induction (4 hours): examples of mathematical induction; strong

induction.
 Sets, relations functions, congruences (9 hours): sets including Venn diagrams,

complements, power sets, operations, DeMorgan’s laws; relations including equivalence
relations, equivalence classes; functions including injective, surjective, inverse,
composition, domain, co-domain, range.

 Recursion (4 hours): recursive definitions of functions; factorials; Fibonacci sequences;
Towers of Hanoi; other functions and sequences.

 Combinatorics (7 hours): binomials; counting arguments; discrete probability;
combinations and permutations; pigeon-hole principle.

 Graphs and trees (11 hours): directed graphs; undirected graphs; weighted graphs;
Eulerian and Hamiltonian circuits; traveling sales person; graph coloring; trees (binary,
spanning); expression trees; tree traversals.

 Logic and Boolean algebra (3 hours): truth tables; propositional calculus; Boolean
algebra and Boolean circuits.

 Other proof techniques (3 hours): direct proof; proofs by counter example,
contrapositive, and contradiction; logical equivalence and circles of implication.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

45

Course Student Learning Outcomes:
Upon successful completion of this course, the student will be able to:

 Perform binary and hexadecimal number conversions.
 Apply mathematical induction and other techniques to prove mathematical results.
 Solve problems involving sets, relations, functions, and congruencies.
 Perform computations using recursively defined functions and structures.
 Use methods of combinatorics to solve counting problems.
 Illustrate the basic terminology and properties of graphs and trees.
 Use graphs and trees to solve problems algorithmically.
 Examine the logical validity of arguments and proofs as they apply to Boolean

expressions

Discrete Structures: Assessment Rubric for Student Learning Outcomes

Program

Outcome

Student Learning

Outcome

Approaches Goal Meets Goal Surpasses Goal

1a Perform binary and
hexadecimal
conversions of
numbers

Converts binary
numbers to their
decimal
equivalent

Converts positive
numbers
between bases 2,
10, and 16

Performs two’s
complement to
represent
negative integers
in binary

1a, 1b,
1c, 2a

Apply mathematical
induction and other
techniques to prove
mathematical results

Recognizes valid
proofs that use
mathematical
induction and
other techniques

Given a simple
problem, such as
an identity,
constructs a
mathematical
proof by
induction

Constructs
mathematical
proofs by
induction and
other techniques

1a, 1b,
1c

Solve problems
involving sets,
relations, functions,
and congruences

Defines the
concepts of sets,
relations,
functions, and
congruences

Solves problems
about sets,
relations,
functions, and
congruences

Evaluates a
problem and
constructs an
appropriate
solution choosing
among sets,
relations,
functions, and/or
congruences

1a, 1b,
1c

Perform computations
using recursively
defined functions and
structures

Explains how a
simple recursive
function is
evaluated

Computes the
correct result
produced by a
recursive
algorithm

Constructs
recursive
algorithms for the
solution of
problems

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

46

1a, 1b,
1c, 2a

Use methods of
combinatorics to solve
counting problems

Recognizes the
need for
combinatorial
techniques such
as combinations
or permutations
to solve a
problem

Solves counting
problems using
combinatorial
techniques such
as combinations
and permutations

Decomposes a
complex problem
into
combinatorial
procedures

1a, 1b,
1c, 2a

Illustrate the basic
terminology and
properties of graphs
and trees

Defines terms
and properties
for graphs and
trees

Given a problem
description
illustrates
appropriate
trees, binary
search trees,
weighted,
directed and
undirected
graphs solutions

Applies
mathematical
proofs to verify
the properties of
graphs

1a, 1b,
1c, 2a

Use graphs and trees
to solve problems
algorithmically

Explains standard
algorithms for
graphs and trees,
such as Eulerian
circuits, spanning
trees, and
Kruskal’s
algorithm

Applies traversal
methods for
graphs and trees

Verifies the
correctness of
graph algorithms
using
mathematical
proofs

1a, 1b,
1c, 2a

Examine the logical
validity of arguments
and proofs as they
apply to Boolean
expressions

Identifies the
properties and
structures of
Boolean algebra

Analyzes the
steps to simplify a
Boolean
expression

Constructs a
proof using the
laws of Boolean
algebra

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

47

APPENDIX A: CUSTOMIZED BLOOM’S TAXONOMY

The Taxonomy of Educational Objectives, often called Bloom's Taxonomy, is a classification of

the different learning outcomes that educators set for students. Bloom's Taxonomy divides

educational objectives into three domains: Affective, Psychomotor, and Cognitive. In Bloom's

hierarchical taxonomy, achievement at the higher levels is dependent on having attained

prerequisite knowledge at lower levels.

The ACM Two-Year College Education Committee has adapted Bloom’s original taxonomy in

developing a rubric for the assessment of student learning outcomes in its computing curricula.

This customization includes only the relevant domains, Cognitive and Affective. The levels

identified in the Cognitive domain revolve around knowledge, comprehension, and thinking

through a particular topic. In its computing curricula, the ACM Two-Year College Education

Committee uses the Cognitive domain to assess student mastery of technical subject matter.

There are six levels in the taxonomy for the Cognitive domain, progressing from the lowest

order processes to the highest:

1. Knowledge - The ability to recall what has been learned.

2. Comprehension - The ability to demonstrate a basic understanding of communicated

material or information.

3. Application - The ability to put basic rules, conventions, ideas and concepts together to

solve new problems.

4. Analysis - The ability to deconstruct information logically into components to ascertain

interrelationships and to distinguish between facts and inferences.

5. Synthesis - The ability to assemble ideas creatively to design or develop a new or unique

product or structure.

6. Evaluation - The ability to judge the value or usefulness of materials, ideas or

information based on established standards and criteria.

The levels identified in the Affective domain describe the way people react emotionally and
their ability to feel empathy for another. Affective outcomes typically assess awareness and
growth in attitudes, emotion, and feelings. In its computing curricula, the ACM Two-Year
College Education Committee uses the Affective domain to assess student demonstration of
soft skills such as professional behavior, ethical conduct, and social awareness of the impact of
technology. There are five levels in the affective domain progressing from the lowest order
processes to the highest:

1. Receiving – Students become aware of an attitude, behavior, or value.
2. Responding – Students exhibit a reaction or change as a result of exposure to an

attitude, behavior, or value.
3. Valuing – Students recognize value and display this through involvement or

commitment.

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

48

4. Organizing – Students determine a new value or behavior as important or a priority.
5. Characterizing – Students integrate consistent behavior as a naturalized value in spite of

discomfort or cost. The value is recognized as a part of the person’s character.

Cognitive Domain

Student Learning Outcomes related to knowledge

The tasks charted below increase in sophistication moving from left to right.

Basic Knowledge Level More Sophisticated, Higher Level Thinking,

 Critical Thinking

Knowledge Comprehension Application Analysis Synthesis Evaluation

Define Convert Apply Analyze Compose Appraise

Identify Demonstrate Calculate Categorize Construct Assess

Label Describe Diagram Compare Create Choose

List Differentiate Edit Contrast Design Critique

Name Discuss Illustrate Decompose Develop Debate

Recall Explain Investigate Deduce Hypothesize Defend

Recognize Interpret Manipulate Devise Invent Estimate

Select Paraphrase Modify Dissect Reconstruct Evaluate

Show Summarize Produce Distinguish Reorganize Judge

State Translate Relate Examine Schematize Justify

Visualize Solve Organize Recommend

 Transform Plan Verify

 Use

Affective Domain

Student Learning Outcomes related to attitudes, behaviors, and values

Elementary Values and Behaviors More highly developed attitudes

Receiving Responding Valuing Organizing Characterizing

Attend Behave Accept Adapt Authenticate

Describe Comply Balance Adjust Characterize

Explain Cooperate Choose Alter Defend

Locate Discuss Differentiate Change Display

Observe Examine Influence Develop Embody

Realize Follow Prefer Improve Habituate

Receive Model Seek Modify Internalize

Recognize Present Value Practice Produce

 Respond Revise Represent

 Show Validate

 Study Verify

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

49

APPENDIX B: REFERENCES

 ACM Two-Year College Computing Curricula Task Force, Computing Curricula 2003: Guidelines

for Associate-Degree Curricula in Computer Science, ACM Press (2003).

ACM Two-Year College Computing Curricula Task Force, Computing Curricula Guidelines for

Associate-Degree Programs: Computing Sciences. ACM Press (1993).

IEEE-CS/ACM Joint Curriculum Task Force, Software Engineering 2004: Curriculum Guidelines for

Undergraduate Degree Programs in Software Engineering.

IEEE-CS/ACM Joint Curriculum Task Force, Computing Curricula 2001: Computer Science.

Association for Computing Machinery, Inc. & the Institute for Electrical and Electronics

Engineers, Inc. Software Engineering Code of Ethics and Professional Practice. (1999). Retrieved

July 12, 2005 from http://www.acm.org/serving/se/code.htm.

ACM/IEEE-CS Joint Curriculum Task Force, Computing Curricula 1991, ACM Press and IEEE

Computer Society Press (1991).

IEEE-CS/ACM CC2001 Task Force, Computing Curricula 2001 Final Draft - December 15, 2001,

http://www.computer.org/education/cc2001/final/index.htm

Bloom, Benjamin S., The Taxonomy of Educational Objectives: Classification of Educational

Goals. Handbook I: The Cognitive Domain, McKay Press, New York (1956).

IEEE-CS/ACM Joint Curriculum Task Force, Computing Curricula 2001: Computer Science,

http://acm.org/education/curric_vols/cc2001.pdf

IEEE-CS/ACM Joint Curriculum Task Force, Curriculum Guidelines for Undergraduate Degree

Programs in Computer Engineering, http://www.acm.org/education/CE-Final-Report.pdf

IEEE Computer Society, http://www.computer.org/education/

National Council of Engineering Examiners, NCEE Model Rules of Professional Conduct,

http://www.ncees.org/

ABET, Inc., http://www.abet.org/

Associate-Degree Transfer Curriculum in ACM Two-Year College Education Committee

Computer Science 2009

50

ACM Code of Ethics and Professional Conduct, http://www.acm.org/constitution/code.html

American Association of Community Colleges, http://www.aacc.nche.edu/

