

Association for Computing Machinery

Committee for Computing Education in Community Colleges (CCECC)

Curricular Guidance for Associate-Degree Transfer Programs

in Computer Science

StrawDog draft version

June 2016

Available for Public Review and Comment from June 30 to July 31, 2016

Feedback being collected at www.surveymonkey.com/r/CS-Cyber-Feedback

Copyright © 2016 by ACM CCECC. All rights reserved.

https://www.surveymonkey.com/r/CS-Cyber-Feedback

Table of Contents

1. Acknowledgements

2. Overview

a. Introduction

b. Two-Year/Community College Environment

c. Cybersecurity across the Computing Curriculum

d. Ethics and Professionalism across the Computing Curriculum

e. Internationalization

f. Assessment

g. Articulation

h. Transfer Programs

i. Career Programs

j. Teaching and Learning Strategies

k. Computing Laboratory Experiences

3. The ACM/IEEE CS2013 Body of Knowledge (Abridged version)

a. Algorithms and Complexity (AL)

b. Architecture and Organization (AR)

c. Computational Science (CN)

d. Discrete Structures (DS)

e. Graphics and Visualization (GV)

f. Human-Computer Interaction (HCI)

g. Information Assurance and Security (IAS)

h. Information Management (IM)

i. Networking and Communications (NC)

j. Operating Systems (OS)

k. Programming Languages (PL)

l. Software Development Fundamentals (SDF)

m. Software Engineering (SE)

n. System Fundamentals (SF)

o. Social Issues and Professional Practice (SP)

4. Assessment Metrics

5. Bloom’s Revised Taxonomy

6. Glossary of Terms

7. Bibliography

Acknowledgements

The members of the ACM Committee for Computing Education in Community Colleges (CCECC)

acknowledges and thanks the ACM Education Board for providing funding for this important

curricular project to develop associate-degree curricular guidance in computer science with

contemporary cybersecurity concepts (CS-Cyber).

ACM CCECC Members

● Dr. Elizabeth K. Hawthorne, Union County College, NJ

● Dr. Cara Tang, Portland Community College, OR

● Prof. Cindy S. Tucker, Bluegrass Community and Technical College, KY

Computer Science-Cybersecurity Team Leaders

● Prof. Teresa T. Moore, Volunteer State Community College, TN

● Prof. Lambros Piskopos, Wilbur Wright College, IL

● Dr. Christian Servin, El Paso Community College, TX

Computer Science-Cybersecurity Task Force Members

● Prof. Kimberly Bertschy, Northwest Arkansas Community College, AR

● Prof. Colleen Case, Schoolcraft College, MI

● Dr. Markus Geissler, Cosumnes River College, CA

● Dr. Becky Grasser, Lakeland Community College, OH

● Prof. Charles Hardnett, Gwinnett Technical College, GA

● Prof. Amardeep Kahlon, Austin Community College District, TX

● Prof. James Kolasa, Bluegrass Community and Technical College, KY

● Dr. Shamsi Moussavi, MassBay Community College, MA

● Prof. Pam Schmelz, Ivy Tech Community College, IN

● Prof. Melissa Stange, Lord Fairfax Community College, VA

● Prof. Khallai Taylor, Miami-Dade College, FL

● Prof. Carole Tharnish, Central Community College, NB

Other Contributors

● Dr. Anne Applin, Southern Maine Community College, ME

● Prof. Bryce Barrie, Saskatchewan Polytechnic, Canada

● Prof. Michael Bauer, Leeward Community College, HI

● Prof. Paul Dadosky, Ivy Tech Community College, IN

● Prof. Andrea DeMott, Ohio University, OH

● Dean Jamie Edwards, Wytheville Community College, VA

● Prof. Rafael Escalante, El Paso Community College, TX

● Dr. Larry Forman, San Diego City College, CA

● Prof. Dianne Hill, Jackson College, MI

● Dean Nancy Jones, Coastline Community College, CA

● Prof. Marc Nester, Wytheville Community College, VA

● Dr. Dean Nevins, Santa Barbara City College, CA

● Dr. Michael Posner, Villanova University, PA

● Prof. Kristopher Roberts, Ivy Tech Community College, IN

● Prof. Barry Sullens, Ivy Tech Community College, IN

● Prof. Robert Surton, Columbia Gorge Community College, OR

Overview

Introduction

This initial draft, called StrawDog, is an update to the Guidelines for Associate-Degree Transfer

Curriculum in Computer Science, published by the ACM Committee for Computing Education in

Community College (CCECC) in 2009 (ccecc.acm.org/guidance/computer-science). Over 30

community college and university computing educators contributed to the creation of StrawDog as

either members of the CS-Cyber task force who met virtually in teams over the course of months

or through participating in a half day workshop at SIGCSE 2016 in Memphis, TN. We continue to

engage the community by asking for your constructive feedback on StrawDog. Your feedback is

SO important in making the next draft version and ultimately the final version better and more

useful to members of our computing education community. The members of the ACM CCECC

thank you for taking the time to provide your comments via www.surveymonkey.com/r/CS-Cyber-

Feedback.

The professional societies of the ACM and the IEEE Computer Society have a long history of

collaborating on computing materials for higher education. These organizations have jointly

produced significant volumes of curricular recommendations and guidelines for associate,

baccalaureate and graduate computing programs; these volumes are referred to as the ACM

Computing Curricula series (www.acm.org/education/curricula-recommendations). Likewise, the

ACM Committee for Computing Education in Community Colleges (CCECC) has produced a

corresponding set of curricular guidelines that provide similar guidance for associate-degree

granting institutions, in a manner that fosters inter-institutional cooperation and student articulation.

This model curriculum provides discussion on transfer considerations and discussion on

articulation in computer science.

Like most countries, cybersecurity is a national priority in the United States with a formal action

plan (www.whitehouse.gov/the-press-office/2016/02/09/fact-sheet-cybersecurity-national-action-

plan). Higher education is a key component of the cybersecurity national action plan (NCAP). ACM

responded by integrating information assurance and security learning outcomes throughout its

most current computer science curricular guidance, CS2013. In 2015, ACM in association with the

Computer Society of the Institute of Electrical and Electronics Engineerings (IEEE-CS), the

Association for Information Systems (AIS), the Cyber Education Project (CEP), and the

International Federation of Information Processing (IFIP) formed a joint task force to create

undergraduate curricular guidelines in cybersecurity (www.csec2017.org). In similar fashion and

informed by the National Cybersecurity Workforce Framework (csrc.nist.gov/nice/framework/), the

ACM CCECC is integrating contemporary cybersecurity content into the revision of its 2009

Guidelines for Associate-Degree Transfer Curriculum in Computer Science.

Two-Year/Community College Environment

According to the American Association of Community Colleges, nearly one-half of all

undergraduates in the United States are enrolled in two-year colleges, and more than half of all

first-time college freshman attend community and technical colleges. “Community colleges are

https://www.surveymonkey.com/r/CS-Cyber-Feedback
https://www.surveymonkey.com/r/CS-Cyber-Feedback

centers of educational opportunity. They are an American invention that put publicly funded higher

education at close-to-home facilities, beginning nearly 100 years ago with Joliet Junior College (in

Joliet, Illinois). Since then, they have been inclusive institutions that welcome all who desire to

learn, regardless of wealth, heritage, or previous academic experience. The process of making

higher education available to the maximum number of people continues to evolve”

(http://www.aacc.nche.edu/).

The community college environment is uniquely positioned, resulting from the threefold mission of

these institutions to provide a learning environment for:

1) transfer into baccalaureate programs;

2) entrance into the local workforce; and

3) lifelong learning for personal and professional enrichment.

In addition, many two-year colleges are drivers of local economic development, providing

workforce development and skills training, as well as offering noncredit programs ranging from

English as a second language to skills retraining to community enrichment programs or cultural

activities.

Two-year colleges serve high school graduates proceeding directly into college, workers needing

to upgrade skill sets or master new ones in order to re-enter the workforce, immigrants seeking to

become integrated into the local culture and master a new language, individuals leaving the

workplace to engage college-level coursework for the first time, returning students with college

degrees who have decided to pursue an alternate career path, and many individuals in need of

ongoing training and skill updating. This diversity is addressed in numerous ways, including

targeted career counseling, remediation of basic skills, specialized course offerings, individualized

instruction and attention, flexible scheduling and delivery methodologies, and a strong emphasis

on retention and successful completion. Furthermore, because two-year colleges have less

restrictive entrance requirements, faculty must be prepared to instruct students exhibiting a broad

range of academic preparations, aptitudes, and learning styles. The mission of two-year college

faculty is to focus their full-time attention on effective pedagogy for educating a diverse student

population, remaining current in their discipline and in the scholarship of teaching and learning,

and fostering student success.

Two-year, community or technical colleges, as well as certain four-year colleges, award associate

degrees to students completing between 60 to 66 higher education credits in a particular program

of study. It is often the case that an associate-degree requires approximately half the college

credit of a bachelor’s degree. Associate-degree programs are complete in their own right, whether

designed specifically to enable graduates to transfer into the upper division of a baccalaureate

program or to gain entry into the workforce. These institutions also offer certificate programs,

intended to be fulfilled in less time than a complete degree program; such programs are often

designed for targeted student audiences and focused on specific content.

At the earliest opportunity, faculty and academic advisors must help each student determine which

type of program best serves the student’s educational and career goals. Such considerations

include the distinctions between certificate, career and transfer programs, the academic

requirements of each, and the associated employment options. Career-oriented associate-degree

(typically AAS) programs provide the specific knowledge, skills, and abilities (KSA) necessary to

proceed directly into the workplace, while transfer-oriented degree (typically AS) programs provide

the academic foundation and pathway to continue a program of study at a four-year college or

university.

Cybersecurity across the Computing Curriculum

Whether referred to as “cybersecurity”, “computer security”, “information security”, “information

assurance” or some other name, curriculum content in creating and maintaining secure computing

environments is a critical component in associate-degree computing programs.

Almost every career path open to a computing student encompasses some aspect of security.

System administrators and engineers must be able to properly design, configure and maintain a

secure system; programmers and application developers must know how to design and build

secure, fault-tolerant software systems from the bottom up; web specialists must be capable of

assessing risks and determining how best to reduce the potential impact of breached systems;

user support technicians must be knowledgeable in security concerns surrounding desktop

computing; and project managers must be able to calculate the cost/benefit tradeoffs involved with

implementing secure systems.

It is the responsibility of faculty to ensure that students are well prepared for the security

challenges they will inevitably encounter in their careers as computing professionals. This can be

addressed by way of a variety of implementation strategies. One approach that some associate-

degree computing programs offer is a host of individual courses on specific security topics. This

approach can provide a wealth of content opportunities for specialization but may create

scheduling challenges for many students as it runs the risk of students graduating without having

taken sufficient electives to achieve the understanding of the security concepts necessary to

function in their professional roles.

Another approach is to fully integrate and incorporate contemporary cybersecurity content into

core, introductory computer science courses with specialized courses reserved for targeted

settings. These guidelines employ the integrated approach, incorporating relevant cybersecurity

student learning outcomes throughout the computer science body of knowledge for lower division,

undergraduate curriculum. The Committee also strongly advocates for learning activities that

require students to actively demonstrate mastery of the tenets of professional conduct, ethical and

responsible behavior, as well as an appreciation for cybersecurity in a holistic manner.

Ethics and Professionalism across the Computing Curriculum

Professional, legal and ethical issues are important elements in the overall curricula for computing

disciplines, and must be integrated throughout the programs of study. This context should be

established at the onset and these matters should appear routinely in discussions and learning

activities throughout the curriculum. The ACM Code of Ethics notes that “When designing or

implementing systems, computing professionals must attempt to ensure that the products of their

efforts will be used in socially responsible ways, will meet social needs, and will avoid harmful

effects to health and welfare.” (www.acm.org/about-acm/acm-code-of-ethics-and-professional-

conduct). The Code goes on to provide an excellent framework for conduct that should be

fostered beginning early in students’ experiences.

As computing technologies become ubiquitous in society, ethical behavior and adherence to codes

of conduct for computing professionals is imperative; therefore, careful consideration of legal,

ethical, and societal issues involving computing, the Internet and databases are essential to the

education of computing professionals. Students who realize the potential uses and abuses of

technology will, as citizens, be able to contribute to public policy debate from a knowledgeable

perspective on issues such as property rights and privacy concerns that affect everyone.

Computer systems have substantial social impact in nearly every setting including applications

such as healthcare, finance, transportation, defense, government, education, and communications;

real-time and safety-critical systems typically have acceptable margins of error close to nil.

Developers and support technologists of such computing systems are confronted by challenges

regarding choices and tradeoffs in the design, implementation, and maintenance of these systems.

Engaging students in the consideration of the ethical aspects for such decisions as well as giving

them practice in identifying and weighing the ethical issues enables them to make more judicious

choices. It is crucial that students pursuing computing careers be made aware of and properly

equipped to handle the complexities of professional judgments; as computing professionals,

graduates must follow codes of conduct and take responsibility for their actions and be

accountable for the systems that they develop and support.

Internationalization

In the process of developing its curricular guidance in computer science, the ACM CCECC

continually seeks international perspectives from two-year post-secondary (“tertiary”) higher

education programs both locally within the United States and globally throughout the world.

Feedback on this early draft is being sought from countries around the globe, such as China, India,

Turkey, South Africa, Australia, New Zealand, Canada, Mexico, Peru, Brazil, the United Kingdom,

and countries across the European Union.

Furthermore, the American Association of Community Colleges (AACC) has established an Office

of International Programs and Services whose stated goals are “to advocate the community

college role in global education among key constituencies, nationally and internationally, to

advance global exchanges and partnerships between member colleges and international entities,

and to promote intercultural understanding and engagement among students, faculty, staff, and

decision makers.” James McKenney, AACC Vice-President for Economic Development and

International Programs, spoke as early as 2002 in a reflective interview titled “The Global Linkage”

appearing in the journal “US Society and Values” about the rapidly expanding phenomenon of

“community colleges”, “two-year technical colleges”, and the “two-year structure” in general

throughout Europe, the Americas and Asia.

This phenomenon has since been reported on, promoted and codified in any number of

publications and resources. For example, the Council for Industry and Higher Education (CIHE)

and The Mixed Economy Group in England have prepared a comprehensive report titled “Higher

Education and Colleges: A Comparison Between England and the USA”. The United Nations-

affiliated Institute of International Education provides a wealth of resources regarding post-

secondary and higher education around the world, including activities of institutions akin to the two-

year colleges of the United States. The Paris-based Organization for Economic Cooperation and

Development (OECD) provides background information, analyses and recommendations for

“opportunities for education in the years after compulsory schooling” across Europe, as does the

Directorate-General for Education and Culture of the European Commission. The “University

World News” and the “World Education News and Reviews” publications are sources of current

events worldwide in post-secondary education; the Community College Research Center at

Columbia University also provides links to such documentation. The Association of Canadian

Community Colleges (ACCC) offers a wealth of information on two-year colleges in Canada. The

Ministry of Education of the People’s Republic of China describes institutions similar to community

colleges in its discussion on “2 to 3-year higher vocational education with the emphasis on high-

level professional technical talents.”

Assessment

The cognitive outcomes in this guidance are clustered into related Knowledge Areas (KAs). The

KAs are subdivided into Knowledge Units (KUs) with a list of corresponding student learning

outcomes. Each learning outcome is accompanied by an assessment rubric. The ACM CCECC

uses a structured assessment template comprised of three tiers: “emerging”, “developed”, and

“highly developed.” Typically as the level of student achievement progresses from “emerging” to

“highly developed”, the level of Bloom’s verbs also increases from the lower order thinking skills

(LOTS) to the higher order thinking skills (HOTS). (For sample three-tiered rubrics, see section on

Assessment Metrics.)

Articulation

Articulation is a key consideration in associate-degree programs which are designed as transfer

curricula. Articulation of courses and programs between academic institutions is a process that

facilitates transfer by students from one institution to another. The goal is to enable students to

transfer in as seamless a manner as possible. Efficient and effective articulation requires accurate

assessment of courses and programs as well as meaningful communication and cooperation.

Both students and faculty have responsibilities and obligations for successful articulation.

Ultimately, students are best served when educational institutions establish well defined

articulation agreements that actively promote transfer.

Articulation agreements often guide curriculum content as well, and are important considerations in

the formulation of transfer-oriented programs of study. Institutions are encouraged to work

collaboratively to design compatible and consistent programs of study that enable students to

transfer, in the United States from associate-degree programs into baccalaureate-degree

programs, and in other countries from post-secondary colleges into universities. A two-year

college must develop transition and articulation strategies for the colleges and universities to which

its students most often transfer, recognizing that it may be necessary to modify course content to

facilitate transfer credit and articulation agreements. A program of study must also take into

consideration the general education requirements at both the initial college and the anticipated

transfer institution. Faculty must ensure that they clearly define program goals, address program

learning outcomes, and evaluate students effectively against defined course outcomes.

Articulation agreements should specify one or more well-defined exit points for students to

matriculate from the post-secondary college to the transfer institution. In turn, faculty at the

receiving institution must provide any transitional preparation necessary to enable transfer

students to continue their academic work on par with students at their institution. Hence, students

must expect to complete programs in their entirety up to well-defined exit points (e.g., completion

of a defined course sequence or program) at one institution before transferring to another

institution; one cannot expect articulation to accommodate potential transfers in the middle of a

carefully designed curriculum. Acting on these considerations, all post-secondary institutions of

higher education will foster student success and best serve their students’ academic and career

aspirations.

Many associate-degree granting institutions have established articulation (“2+2”) agreements

between their associate degree career programs and corresponding high school programs. For

example, many two-year colleges award up to 12 credit hours toward an associate degree in

Information Technology to students who complete the Cisco Networking program in high school. In

the United States, this is also referred to as middle college.

Transfer Programs

Typically associate-degree computing programs fall into two categories: those designed for

transfer into baccalaureate-degree programs (Associate in Science) and those designed to

prepare graduates for immediate entry into career paths (Associate in Applied Science). Colleges

should make students aware at the onset of their studies of the distinctions between career and

transfer programs, the academic requirements of each, and the resultant employment options.

Transfer-oriented associate-degree programs rely on formal inter-institutional articulation

agreements to ensure that students experience a seamless transition between lower division

associate-degree coursework and upper division baccalaureate-degree coursework. Articulation of

courses and programs between two academic institutions facilitates the transfer of students from

one institution to the other. Faculty and students alike have responsibilities and obligations to

achieve successful articulation.

Efficient and effective articulation requires a close evaluation of well-defined course and program

outcomes as well as meaningful communication and cooperation. For example, a particular

course in one institution might not be equivalent to a single course at a second institution;

however, a group or sequence of courses could be determined equivalent to another course

grouping or sequence. Faculty must ensure that they clearly define program requirements,

address program goals in a responsible manner, and assess students effectively against defined

standards. When specifying points of exit within the articulation agreement document, faculty at

the transferring institution must provide sufficient material to prepare students to pursue further

academic work at least as well as students at the second institution.

It is not uncommon for students to complete an associate-degree program of study, choose to

work for a period of time, and then return to college to pursue their upper division studies for career

advancement. (And many employers will provide tuition reimbursement for workers who wish to

continue toward a baccalaureate degree.) Because of the ever evolving nature of computing,

students must be aware that course content and program requirements are updated frequently,

potentially subjecting them to new program requirements and revised articulation agreements.

Students are best served when sequences of courses are completed as a unit at one institution

due to the comprehensive and conceptual nature of the computing and mathematics content.

Hence, students should complete programs of study in their entirety up to well-defined exit points

at one institution before transferring to another institution; articulation cannot be expected to

accommodate potential transfers in the middle of a well-defined and recognized body of

knowledge.

Academic institutions are advised to work collaboratively to design compatible and consistent

programs of study that enable students to transfer easily from associate-degree programs into

baccalaureate-degree programs. In support of this goal, the ACM provides curricular guidelines for

both associate- and baccalaureate-degree programs in computer science.

Career Programs

Typically associate-degree programs fall into two categories: those designed to prepare graduates

for immediate entry into career paths and those designed for transfer into baccalaureate-degree

programs. Colleges should make students aware at the beginning of their studies of the

distinctions between career and transfer programs, the academic requirements of each, and the

resultant employment options. Students graduating from a career-oriented associate-degree

computing program will typically enter the workforce directly upon graduation.

Career-oriented associate-degree programs provide students with the specific knowledge, skills

and abilities (KSA) necessary to proceed directly into employment in a targeted work environment.

The program of study will include professional development coursework as well as courses that

emphasize communication skills, mathematical reasoning and other general education

requirements. The degree granted upon completion of a career-oriented program is typically an

Associate in Applied Science (AAS). In addition, many students will augment their formal studies

with technical certifications to enhance their immediate employability.

The following factors support the viability of a career-oriented associate-degree program and help

ensure the success of students in the workplace:

● An active industry advisory committee consisting of prospective employers, providing

guidance concerning the knowledge, skills, and abilities students must possess to enter

directly into a career within their community.

● Real-world work experience including co-op programs, internships and other practicum

activities, with an emphasis on professional practices. Core and elective coursework as

recommended by advisory committees.

● Integration of technical, communication and time-management skills, team projects, and

other interpersonal skills that prepare the student for a business working environment.

● Potential articulation paths that enable the career-oriented student to pursue a

baccalaureate degree in the future after working for some period of time.

● Assessment processes whereby students can earn credit for relevant experience.

It is important to note that a career-oriented associate-degree program is not intended to facilitate

transfer into a baccalaureate program, but rather to provide entry into a career that requires

specialized post-secondary skills and an advanced level of expertise and education. Nevertheless,

many students graduating from career-oriented programs subsequently select to further their

education at the baccalaureate level (frequently with employer tuition assistance plans).

Teaching and Learning Strategies

It is important to engage students’ innate interests early in their academic careers to cement their

commitment to computing, to further student retention, and to motivate achievement in their

coursework. In addition to specific program content, curriculum designers must give consideration

to learning activities, instructional techniques and student success. There are specific techniques

that can be incorporated that reflect the nature of the work of computing professionals. Activities

should be designed so that students learn to work in teams and in the context of projects, gain

insights into the real-world setting and associated considerations, see both theory and application,

and appreciate the role of foundation material in setting the stage for intermediate topics.

Faculty at two-year colleges must remain aware of the importance of incorporating professional

practices and applied work as an integral part of all computing programs. Computing students

should be encouraged to:

● work in teams;

● use techniques of task and time management;

● solve practical problems in course projects;

● make presentations;

● confront issues of privacy, confidentiality and ethics;

● use current technology in laboratories;

● attain real-world experience through cooperative education, internships, and/or other

practicum activities; and

● participate in student chapters of computing societies and organizations for professional

development opportunities.

Increasingly, the area of computing has become critical to the operation of many organizations.

Colleges should ensure that students are familiar with the nature of this field and the expectations

of the workplace. An active industry advisory committee is an important asset in helping faculty

incorporate current professional practices into the curriculum. Computing employees must

demonstrate professionalism and ethical behavior, adhere to codes of conduct, safeguard

confidentiality, and respect privacy. They must take responsibility for their actions, be accountable

to the organization, understand the impact of their work on others, and demonstrate effective and

efficient work practices. This field also demands that professionals engage in an ongoing process

of professional growth and development to ensure that their skills and abilities remain current with

ever-changing technology. Faculty know that a conscious and proactive incorporation of

professional practices into a computing curriculum benefits students, either as a valuable

component in a transfer-oriented program, or in addressing industry needs for qualified personnel

as they exit a career-oriented program.

Computing Laboratory Experiences

The computer laboratory experience is an essential part of the computing curriculum, either as an

integral part of a course or as a separate stand-alone course. Such experiences should start early

in the curriculum, the very beginning when students are often motivated by the “hands-on” nature

of computing. Introductory laboratories should be designed and conducted to reinforce concepts

presented in lecture classes and homework. Students should be provided many opportunities to

observe, explore and manipulate characteristics and behaviors of actual devices, systems, and

processes. Every effort should be made by instructors to create excitement, interest and sustained

enthusiasm in computing students. Many associate-degree granting institutions will be familiar with

strong lab-based learning activities, drawing on years of experience with programs such as

electronics technology and industry-provided networking curricula. Numerous colleges have long

recognized that experiences such as survey courses in engineering often engage students in

stimulating activities that peak their interests and set the stage for career choices in such fields.

These colleges will find that they can leverage existing facilities, resources and faculty expertise in

implementing computing programs.

The ACM/IEEE CS2013 Body of Knowledge

(Abridged Version)

The ACM/IEEE CS2013 Body of Knowledge (BoK) serves as the foundational curricular

framework for these associate-degree transfer guidelines in computer science. The CS2013

BoK is organized into a set of 18 Knowledge Areas (KA) that correspond to topical areas of

study in computing for undergraduate, baccalaureate degree programs in computer science.

These associate-degree transfer guidelines include 15 of the 18 Knowledge Areas,

purposefully excluding the Intelligent Systems, Parallel and Distributed Computing, and

Platform-based Development KAs, each for different reasons. The Intelligent Systems KA

consists mostly of elective content that is more appropriate for upper division undergraduate

instruction. The learning outcomes in the Systems Fundamentals and Operating Systems KAs

that are part of these associate-degree guidelines cover the appropriate introductory content in

the Parallel and Distributed KA for lower division, computer science transfer curriculum. Lastly,

there are no core hours associated with the Platform-based Development (PBD) KA, but rather

PDB “is concerned with the design and development of software applications that reside on

specific software platforms. In contrast to general purpose programming, platform-based

development takes into account platform-specific constraints. For instance, web programming,

multimedia development, mobile computing, app development, and robotics are examples of

relevant platforms that provide specific services/APIs/hardware that constrain development.”

(cs2013.org, p. 144).

The 15 Knowledge Areas of the Associate-Degree Transfer Curriculum

1. Algorithms and Complexity (AL)

2. Architecture and Organization (AR)

3. Computational Science (CN)

4. Discrete Structures (DS)

5. Graphics and Visualization (GV)

6. Human-Computer Interaction (HCI)

7. Information Assurance and Security (IAS)

8. Information Management (IM)

9. Networking and Communications (NC)

10. Operating Systems (OS)

11. Programming Languages (PL)

12. Software Development Fundamentals (SDF)

13. Software Engineering (SE)

14. System Fundamentals (SF)

15. Social Issues and Professional Practice (SP)

Below are the learning outcomes organized within the 15 Knowledge Areas (KA) and

associated Knowledge Units (KU) that together comprise ACM’s associate-degree transfer

curriculum in computer science. The learning outcomes are expressed using action verbs from

Bloom’s Revised Taxonomy (http://ccecc.acm.org/assessment/blooms). The Bloom’s level is

indicated in [italics] after each learning outcome.

Algorithms and Complexity (AL) Knowledge Area

AL/Basic Analysis KU Learning Outcomes

1) Explain the differences among best, average, and worst case behaviors of an algorithm.

[Understanding]

2) Calculate informally the time and space complexity of simple algorithms. [Applying]

3) Explain Big O notation. [Understanding]

4) Classify algorithms based upon their Big O notation. [Understanding]

5) Contrast standard complexity classes. [Analyzing]

6) Execute algorithms on input of various sizes and compare performance. [Applying]

7) Analyze time and space trade-offs in algorithms. [Analyzing]

8) Explain the importance of writing secure and robust programs. [Understanding]

AL/Algorithmic Strategies KU Learning Outcomes

1) List examples of direct and indirect information flows. [Remembering]

2) Identify a variety of data structures including stacks, queues, priority queues, references,

linked structures, resizable arrays, trees, graphs, and hash tables. [Remembering]

3) Demonstrate how to access certain positions of an array. [Understanding]

4) Demonstrate which data model (list, set, hash table, tree, or graph) is appropriate for

solving a problem. [Understanding]

5) Compare and contrast approaches for resolving collisions in hash tables, e.g., linear

probing, quadratic probing, double hashing, rehashing, and chaining. [Analyzing]

6) Assess secure programming by writing a program that checks boundaries in an array as an

example of a buffer over/underflow. [Evaluating]

7) Implement a recursive solution to a problem. [Applying]

AL/Fundamental Data Structures and Algorithms KU Learning Outcomes

1) Implement basic numerical algorithms. [Applying]

2) Implement simple search algorithms and explain the differences in their time complexities.

[Applying]

3) Implement common quadratic and O(N log N) sorting algorithms. [Applying]

4) Describe the implementation of hash tables, including collision avoidance and resolution.

[Understanding]

5) Discuss the runtime and memory efficiency of principal algorithms for sorting, searching,

and hashing. [Understanding]

6) Discuss factors other than computational efficiency that influence the choice of algorithms,

such as programming time, maintainability, and the use of application-specific patterns in

the input data. [Understanding]

7) Explain how tree balance affects the efficiency of various binary search tree operations.

[Understanding]

8) Solve problems using fundamental graph algorithms, including depth-first and breadth-first

search. [Applying]

AL/Basic Automata, Computability and Complexity KU Learning Outcomes

1) Use a regular expression to represent a specified language. [Applying]

2) Describe a deterministic finite state machine to accept a specified language.

[Understanding]

3) Explain the role of random numbers in security, beyond just cryptography (e.g. password

generation, randomized algorithms to avoid algorithmic denial of service attacks).

[Understanding]

4) Discuss the concept of finite state machines. [Understanding]

5) Explain why the halting problem has no algorithmic solution. [Understanding]

Architecture and Organization (AR) Knowledge Area

AR/Machine Level Representation of Data KU Learning Outcomes

1) Explain why everything is data, including instructions, in computers. [Understanding]

2) Explain reasons for using alternative formats to represent numerical data. [Understanding]

3) Explain how fixed-length number representations affect accuracy and precision.

[Understanding]

4) Describe the internal representation of non-numeric data, such as characters, strings,

records, and arrays. [Understanding]

5) Convert numerical data from one format to another, such as, negative integers into sign-

magnitude and two’s-complement representations. [Applying]

AR/Assembly Level Machine Organization KU Learning Outcomes

1) Explain the organization of the classical von Neumann machine and its major functional

units. [Understanding]

2) Demonstrate how high-level language patterns map to assembly/machine language,

including subroutine calls. [Understanding]

3) Explain the basic concepts of interrupts and I/O operations. [Understanding]

4) Write simple assembly language program segments. [Applying]

AR/Memory System Organization and Architecture KU Learning Outcomes

1) Identify the main types of memory technology and their relative cost and performance.

[Remembering]

2) Explain the effect of memory latency on running time. [Understanding]

3) Describe how the use of memory hierarchy is used to reduce the effective memory latency.

[Understanding]

Computational Science (CN) Knowledge Area

CN/Introduction to Modeling and Simulation KU Learning Outcomes

1) Explain the concept of modeling and the use of abstraction that allows the use of a

machine to solve a problem. [Understanding]

2) Describe the relationship between modeling and simulation, i.e., thinking of simulation as

dynamic modeling. [Understanding]

3) Differentiate among the different types of simulations, including physical simulations,

human-guided simulations, and virtual reality. [Understanding]

CN/Modeling and Simulation KU Learning Outcomes

1) Explain and give examples of the benefits of simulation and modeling in a range of

important application areas. [Understanding]

CN/Processing KU Learning Outcomes

1) Describe or sketch a workflow for an existing computational process such as the creation of

a graph based on experimental data. [Understanding]

2) Describe the process of converting an algorithm to machine-executable code.

[Understanding]

3) Summarize the phases of software development and compare several common lifecycle

models. [Understanding]

4) Describe underflow, overflow, round off, and truncation errors in data representations.

[Understanding]

5) Describe potential cyber attacks involving digital data. [Understanding]

Discrete Structures (DS) Knowledge Area

DS/Sets, Relations, and Functions KU Learning Outcomes

1) Explain with examples the basic terminology of functions, relations, and sets.

[Understanding]

2) Perform the operations associated with sets, functions, and relations. [Applying]

3) Compare practical examples to the appropriate set, function, or relation model, and

interpret the associated operations and terminology in context. [Analyzing]

DS/Basic Logic KU Learning Outcomes

1) Convert logical statements from informal language to propositional and predicate logic

expressions. [Understanding]

2) Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real problems

such as predicting the behavior of software or solving problems such as puzzles.

[Applying]

3) Use the rules of inference to construct proofs in propositional and predicate logic.

[Applying]

4) Describe how symbolic logic can be used to model real-life situations or applications,

including those arising in computing contexts such as software analysis (e.g. program

correctness), database queries, and algorithms. [Understanding]

5) Apply formal methods of symbolic propositional and predicate logic, such as calculating

validity of formulae and computing normal forms. [Applying]

6) Describe the strengths and limitations of propositional and predicate logic. [Understanding]

DS/Proof Techniques KU Learning Outcomes

1) Outline the basic structure of each proof technique (direct proof, proof by contradiction, and

induction) described in this unit. [Analyzing]

2) Apply each of the proof techniques (direct proof, proof by contradiction, and induction)

correctly in the construction of a sound argument. [Applying]

3) Deduce the best type of proof for a given problem. [Analyzing]

4) Explain the parallels between ideas of mathematical and/or structural induction to recursion

and recursively defined structures. [Understanding]

5) Explain the relationship between weak and strong induction and give examples of the

appropriate use of each. [Understanding]

DS/Basics of Counting KU Learning Outcomes

1) Apply counting arguments, including sum and product rules, inclusion-exclusion principle

and arithmetic/geometric progressions. [Applying]

2) Apply the pigeonhole principle in the context of a formal proof. [Applying]

3) Calculate permutations and combinations of a set, and interpret the meaning in the context

of the particular application. [Applying]

4) Compare real-world applications to appropriate counting formalisms. [Analyzing]

5) Solve a variety of basic recurrence relations. [Applying]

6) Analyze a problem to determine underlying recurrence relations. [Analyzing]

7) Perform computations involving modular arithmetic. [Applying]

DS/Graphs and Trees KU Learning Outcomes

1) Illustrate the basic terminology of graph theory including properties and special cases for

each type of graph/tree. [Applying]

2) Demonstrate different traversal methods for trees and graphs, including pre-, post-, and in-

order traversal of trees. [Understanding]

3) Solve a variety of real-world problems in computer science using appropriate forms of

graphs and trees, such as representing a network topology or the organization of a

hierarchical file system. [Applying]

4) Implement and use balanced trees and B-trees. [Applying]

5) Implement graph algorithms, i.e., graph search, union-find, minimum spanning trees, and

shortest paths. [Applying]

6) Demonstrate how concepts from graphs and trees appear in data structures, algorithms,

proof techniques (structural induction), and counting. [Understanding]

7) Describe binary search trees and AVL trees. [Understanding]

8) Explain complexity in the ideal and in the worst case scenario for both implementations.

[Understanding]

DS/Discrete Probabilities KU Learning Outcomes

1) Calculate probabilities of events and expectations of random variables for elementary

problems. [Applying]

2) Differentiate between dependent and independent events. [Understanding]

3) Identify a case of the binomial distribution and compute a probability using that distribution.

[Remembering]

4) Apply Bayes theorem to determine conditional probabilities in a problem. [Applying]

5) Apply the tools of probability to solve problems such as the average case analysis of

algorithms or analyzing hashing. [Applying]

Graphics and Visualization (GV) Knowledge Area

GV/Fundamental Concepts KU Learning Outcomes

1) Explain the progression of Dimension and Coordinate System. [Understanding]

2) Describe common uses of digital presentation to human senses. (e.g., computer graphics,

sound, haptic devices). [Understanding]

3) Explain in general terms how analog signals can be reasonably represented by discrete

samples, for example, how images can be represented by pixels. [Understanding]

4) Explain how the limits of human perception affect choices about the digital representations.

[Understanding]

5) Diagram a simple user interface using a standard API. [Applying]

6) Describe the differences in usage of file-types. (eg. lossy and lossless image compression

techniques). [Understanding]

7) Describe color models and their use in graphics display devices. [Understanding]

8) Differentiate vector and raster rendering, resolution dependence and independence.

[Understanding]

9) Compare techniques for developing a motion sequence. (discrete frames vs tweening)

[Analyzing]

10) Analyze visualization techniques based on the problem needs. [Analyzing]

11) Use a multi-step Design Process to determine the problem, assess the audience and solve

the problem. [Applying]

12) Diagram a program that has dynamic flexibility to multiple platforms (fluid layout or

responsive design). [Applying]

13) Describe the conversion between different types of media. [Understanding]

14) Compare media delivery platforms identifying both security vulnerabilities and strengths.

[Analyzing]

15) Use good file management techniques for backup and disaster planning. [Applying]

16) Use SWOT (Strength, Weaknesses, Threats, Opportunities) and other analysis methods to

help identify needs. [Applying]

Human-Computer Interaction (HCI) Knowledge Area

HCI/Foundations KU Learning Outcomes

1) Discuss why human-centered software development is important. [Understanding]

2) Use a conceptual vocabulary for analyzing human interaction with software: affordance,

conceptual model, feedback, and so forth. [Applying]

3) Illustrate a user-centered design process that explicitly takes account of the fact that the

user is not like the developer or their acquaintances. [Applying]

4) Implement a simple usability test for an existing software application. [Applying]

5) Describe the first principles of security for software design. [Understanding]

6) Describe why each principle of secure software design is important to security and how to

incorporate each principle into software design. [Understanding]

7) Explain the interaction between security and system usability and the importance for

minimizing the effects of security mechanisms. [Understanding]

HCI/Designing Interaction KU Learning Outcomes

1) Illustrate a simple application, together with help and documentation, that supports a

graphical user interface. [Applying]

2) Discuss at least one national or international user interface design standard.

[Understanding]

3) Analyze and document the interface needs of an identified user group. [Analyzing]

4) Describe the issues of trust in interface design with an example of a high and low trust

system. [Understanding]

Information Assurance and Security (IAS) Knowledge Area

IAS/Foundational Concepts in Security KU Learning Outcomes

1) Recognize the importance of security as a continuous process and its balancing nature

between protection mechanisms and availability of data and information. [Remembering]

2) Differentiate between Information Security and Information Assurance. [Understanding]

3) Describe the concepts of risk, threats, vulnerabilities, attack vectors, and exploits (including

the fact that there is no such thing as perfect security). [Understanding]

4) Explain the importance of security controls and countermeasures to minimize security risk

and exposure. [Understanding]

5) Analyze the tradeoffs of balancing security properties (Confidentiality, Integrity, Availability,

as well as Authentication, Authorization, Access, Authenticity, Non-Repudiation, Privacy).

[Analyzing]

6) Explain the concepts of trust and trustworthiness. [Understanding]

7) Describe important ethical issues to consider in security. [Understanding]

8) Investigate risks to privacy and anonymity in technology. [Applying]

9) Apply cybersecurity principles to a changing landscape. [Applying]

10) Discuss the benefits of having multiple layers of defenses. [Understanding]

IAS/Principles of Secure Design KU Learning Outcomes

1) Describe the principle of least privilege and isolation as applied to system design.

[Understanding]

2) Summarize the principles of fail-safe and deny-by-default. [Understanding]

3) Discuss the implications of relying on open design or the secrecy of design for security.

[Understanding]

4) Explain the goals of end-to-end data security. [Understanding]

5) Discuss the benefits of having multiple layers of defenses (Defense In Depth).

[Understanding]

6) For each stage in the lifecycle of a product, investigate what security considerations should

be evaluated. [Applying]

7) Recognize the tradeoffs associated with designing security into a product. [Remembering]

IAS/Defensive Programming KU Learning Outcomes

1) Implement input validation and data sanitization in applications as necessary considering

adversarial control of the input channel. [Applying]

2) Explain the tradeoffs of developing a program in a type-safe language. [Understanding]

3) Implement programs that properly handle exceptions and error conditions. [Applying]

4) Recognize the need to update software to fix security vulnerabilities. [Remembering]

IAS/Threats and Attacks KU Learning Outcomes

1) Identify likely attack types against standalone and networked software systems.

[Remembering]

2) Describe risks to privacy and anonymity in information systems. [Understanding]

3) Discuss the key principles, such as membership and trust, of social engineering.

[Understanding]

IAS/Cryptography KU Learning Outcomes

1) Explain the purpose of cryptography and how it is used to secure data. [Understanding]

2) Define key terms in cryptology. [Remembering]

3) Describe basic methods for transforming plaintext into ciphertext. [Understanding]

4) Explain the difference between symmetric and asymmetric encryption and how they are

collectively used to secure digital communications and e-commerce transactions.

[Understanding]

IAS/Web Security KU Learning Outcomes

1) Explain browser and web security model concepts including same-origin policy, web

sessions, and secure communication channels. [Understanding]

2) Investigate common vulnerabilities and attacks in web applications and the coding

strategies that are used to mitigate them. [Applying]

IAS/Secure Software Engineering KU Learning Outcomes

1) Write software requirements that include basic security specifications. [Applying]

2) Implement a plan to test the security modules in software. [Applying]

3) Investigate security vulnerabilities in a software at the requirement and design phases of

the software development life cycle. [Applying]

Information Management (IM) Knowledge Area

IM/Information Management Concepts KU Learning Outcomes

1) Describe how humans gain access to information and data to support their needs.

[Understanding]

2) Describe the advantages and disadvantages of central organizational control over data.

[Understanding]

3) Summarize the careers/roles associated with information management. [Understanding]

4) Differentiate information with data. [Understanding]

5) Describe potential system attacks and the actors that might perform them. [Understanding]

6) Describe contingency plans for various size organizations to include: business continuity,

disaster recovery and incident response. [Understanding]

7) Describe specific plans to secure data and information. [Understanding]

8) Discuss vulnerabilities and failure scenarios in common forms of information systems.

[Understanding]

IM/Database Systems KU Learning Outcomes

1) Explain the characteristics that distinguish the database approach from the approach of

programming with data files. [Understanding]

2) Describe the most common designs for core database system components including the

query optimizer, query executor, storage manager, access methods, and transaction

processor. [Understanding]

3) Summarize the basic goals, functions, and models of database systems. [Understanding]

4) Describe the components of a database system and give examples of their use.

[Understanding]

5) Describe the roles of major DBMS functions in a database system. [Understanding]

6) Explain the concept of data independence and its importance in a database system.

[Understanding]

7) Use a declarative query language to elicit information from a database. [Applying]

8) Describe common security concerns in database management systems. [Understanding]

9) Apply security principles to the design and development of database systems and database

structures. [Applying]

IM/Data Modeling KU Learning Outcomes

1) Contrast appropriate data models, including internal structures, for different types of data.

[Analyzing]

2) Describe concepts in modeling notation (e.g., Entity-Relation Diagrams or UML) and how

they would be used. [Understanding]

3) Explain the fundamental terminology used in the relational data model. [Understanding]

4) Describe the basic principles of the relational data model. [Understanding]

5) Apply the modeling concepts and notation of the relational data model. [Applying]

6) Diagram a relational data model for a given scenario. [Understanding]

7) Describe the basic concepts of the OO model. [Understanding]

8) Describe the differences between relational data models and other models such as semi-

structured or flexible schema (e.g., JSON, NoSQL). [Understanding]

9) Describe relevant security and privacy issues given a system and data management

structure. [Understanding]

Networking and Communications (NC) Knowledge Area

NC/Introduction KU Learning Outcomes

1) Explain the basic structure of the Internet. [Understanding]

2) Define basic network terminology. [Remembering]

3) Describe the layered structure of a typical networked architecture. [Understanding]

4) Diagram the layers of the OSI model. [Applying]

NC/Networked Applications KU Learning Outcomes

1) List the differences and the relationships between names and addresses in a network.

[Remembering]

2) Define the principles behind naming schemes and resource location. [Remembering]

3) Implement a simple client-server socket-based application. [Applying]

NC/Routing and Forwarding KU Learning Outcomes

1) Describe how packets are forwarded in an IP network. [Understanding]

2) Differentiate between routing and switching. [Understanding]

NC/Local Area Networks KU Learning Outcomes

1) Describe how frames are forwarded in a Local Area Network. [Understanding]

2) Describe the resources and services that Local Area Networks support. [Understanding]

NC/Mobility KU Learning Outcomes

1) Describe the organization of a wireless network. [Understanding]

2) Describe how wireless networks support mobile users. [Understanding]

Operating Systems (OS) Knowledge Area

OS/Overview of Operating Systems KU Learning Outcomes

1) Explain major objectives, functions and concepts of modern operating systems.

[Understanding]

2) Describe key features of a contemporary operating system, such as scripting, user

interfaces, and updates, with respect to convenience, efficiency, and the ability to evolve.

[Understanding]

3) Differentiate between prevailing types of operating systems, such as networked, mobile,

real-time, and distributed. [Understanding]

4) Discuss potential threats to operating systems and the security features designed to guard

against them. [Understanding]

OS/Operating System Principles KU Learning Outcomes

1) Describe the value of APIs and middleware. [Understanding]

2) Describe how computing resources are used by application software and managed by

system software. [Understanding]

3) Define a device list and a driver I/O queue. [Remembering]

OS/Concurrency KU Learning Outcomes

1) Describe the need for concurrency within the framework of an operating system.

[Understanding]

OS/Memory Management KU Learning Outcomes

1) Describe the principles of memory management, including the function of and need for

cache memory. [Understanding]

2) Describe the principles of virtual memory as applied to caching and paging.

[Understanding]

3) Define the concept of thrashing. [Remembering]

OS/Security and Protection KU Learning Outcomes

1) Explain the need for protection and security in an OS. [Understanding]

2) Summarize the features of an operating system used to provide protection and security.

[Understanding]

3) Explain the mechanisms available in an OS to control access to resources. [Understanding]

OS/Virtual Machines KU Learning Outcomes

1) Explain the concept of virtualization and how it is realized in hardware and software.

[Understanding]

OS/Device Management KU Learning Outcomes

1) Explain the relationship between the physical hardware and the virtual devices maintained

by the operating system. [Understanding]

Programming Languages (PL) Knowledge Area

PL/Object-Oriented Programming KU Learning Outcomes

1) Implement a simple class hierarchy, including superclasses and subclasses, using

encapsulation, abstraction, inheritance, and polymorphism. [Applying]

2) Use control flow in a program using dynamic dispatch. [Applying]

3) Develop secure GUI applications using modern GUI development libraries and tools.

[Creating]

4) Use private and protected methods to secure class data and to demonstrate encapsulation.

[Applying]

5) Apply fundamental security principles and strategies to software development to inhibit

attacks. [Applying]

6) Illustrate the secure development lifecycle. [Applying]

7) Assess secure coding by checking parameters based on certain data restrictions.

[Applying]

8) Describe the tenets of OOP: encapsulation, abstraction, inheritance, and polymorphism

and how they impact security. [Understanding]

9) Describe the characteristics of static, stack, and heap allocation. [Understanding]

10) Describe the state of the call stack when calling non-recursive and recursive subroutines.

[Understanding]

11) Explain the difference between method definition and method calling. [Understanding]

12) Describe confidentiality, integrity, and availability and the impact each has on security.

[Understanding]

PL/Functional Programming KU Learning Outcomes

1) Write basic algorithms that avoid assigning to mutable state or considering reference

equality. [Applying]

2) Compare and contrast the procedural/functional approach and the object-oriented

approach. [Analyzing]

3) Write useful functions that take and return other functions. [Applying]

PL/Event Driven and Reactive Programming KU Learning Outcomes

1) Write event handlers for use in reactive systems, such as GUIs. [Applying]

2) Explain why an event-driven programming style is natural in domains where programs react

to external events. [Understanding]

3) Describe an interactive system in terms of a model, a view, and a controller.

[Understanding]

4) Describe how event-driven GUI applications are structured when guarding against

injection-based attacks. [Understanding]

PL/Basic Type Systems KU Learning Outcomes

1) Describe examples of program errors detected by a type system. [Understanding]

2) For multiple programming languages, identify program properties checked statically and

program properties checked dynamically. [Remembering]

3) Write an example program that does not type-check in a particular language and yet would

have no error if run. [Applying]

4) Use types and type-error messages to write and debug programs. [Applying]

5) Describe how object-oriented languages such as Java is strong-type language when define

a data type in compile time. [Understanding]

6) Explain why you might choose to develop a program in a type-safe language in contrast to

an unsafe programming language. [Understanding]

Software Development Fundamentals (SDF) Knowledge Area

SDF/Algorithms and Design KU Learning Outcomes

1) Discuss the importance of algorithms in the problem-solving process. [Understanding]

2) Discuss how a problem may be solved by multiple algorithms, each with different

properties. [Understanding]

3) Use a programming language to implement algorithms designed to solve simple problems.

[Applying]

4) Implement, test, and debug simple recursive functions and procedures. [Applying]

5) Apply the techniques of decomposition to break a program into smaller pieces. [Applying]

6) Describe the data components and behaviors of multiple abstract data types.

[Understanding]

7) Write simple programs which use abstract data types (ADTs). [Applying]

8) Identify the relative strengths and weaknesses among multiple designs or implementations

for a problem. [Remembering]

9) Demonstrate brute-force algorithms vs divide and conquer algorithms to accomplish

security objectives: e.g., attempt to breaking a password. [Understanding]

10) Explain the difference and complexity between iterative-based and recursive-based

implementations. [Understanding]

11) Choose whether a recursive or iterative solution is most appropriate for a problem.

[Evaluating]

SDF/Fundamental Programming Concepts KU Learning Outcomes

1) Describe the characteristics of secure programming. [Understanding]

2) Discuss the importance of usability in security mechanism design. [Understanding]

3) Summarize the principle of fail-safe and deny-by-default. [Understanding]

4) Produce software components that satisfy their functional requirements without introducing

vulnerabilities. [Applying]

5) Write code which uses defensive programming methods, such as input validation, type

checking and buffer overflow. [Applying]

6) Examine security objectives by identifying bad input from the user according to the program

design. [Analyzing]

SDF/Fundamental Data Structures KU Learning Outcomes

1) Describe common applications for each of the following data structures: stack, queue,

priority queue, set, and map. [Understanding]

2) Write programs that use each of the following data structures: arrays, records/structs,

strings, linked lists, stacks, queues, sets, and maps. [Applying]

3) Compare alternative implementations of data structures with respect to performance.

[Analyzing]

4) Describe how references allow for objects to be accessed in multiple ways. [Understanding]

5) Choose the appropriate data structure to solve a problem. [Evaluating]

SDF/Development Methods KU Learning Outcomes

1) Describe common coding errors that introduce security vulnerabilities. [Understanding]

2) Perform a code review on a program component. [Applying]

3) Describe opportunities within given program components for simple refactoring.

[Understanding]

4) Describe contract programming and the role of preconditions, postconditions, and

invariants. [Understanding]

5) Apply a variety of strategies to test and debug simple programs. [Applying]

6) Use an IDE to create, execute, and debug programs. [Applying]

7) Use standard libraries for a given programming language to create, execute, and debug

programs. [Applying]

8) Apply consistent documentation and program style standards. [Applying]

Software Engineering (SE) Knowledge Area

SE/Software Processes KU Learning Outcomes

1) Describe how software can interact with and participate in various systems including

information management, embedded, process control, and communications systems.

[Understanding]

2) Describe the relative advantages and disadvantages among several major process models

(e.g., waterfall, iterative, and agile). [Understanding]

3) Describe the different practices that are key components of various process models.

[Understanding]

4) Differentiate among the phases of software development. [Understanding]

5) Describe how programming in the large differs from individual efforts with respect to

understanding a large code base, code reading, understanding builds, and understanding

context of changes. [Understanding]

6) Describe the relative advantages and disadvantages among several major process models

(e.g., multi-level security, waterfall with security, comprehensive lightweight application

security process (CLASP), Extreme Programming, Aspect-oriented programming).

[Understanding]

SE/Software Project Management KU Learning Outcomes

1) Discuss common behaviors that contribute to the effective functioning of a team.

[Understanding]

2) Describe necessary roles in a software development team. [Understanding]

3) Describe the sources, hazards, and potential benefits of team conflict.

[Understanding]

4) Apply a conflict resolution strategy in a team setting. [Applying]

5) Use an ad hoc method to estimate software development effort (e.g., time) and

compare to actual effort required. [Applying]

6) Describe different categories of risk in software systems. [Understanding]

7) Discuss the need to update software to fix security vulnerabilities and the life cycle

management of the fix. [Understanding]

SE//Tools and Environments KU Learning Outcomes

1) Describe the difference between centralized and distributed software configuration

management. [Understanding]

2) Describe how version control can be used to help with software release management.

[Understanding]

3) Explain configuration items and use a source code control tool in a small team-based

project. [Understanding]

4) Describe how available static and dynamic test tools can be integrated into the software

development environment. [Understanding]

5) Describe the issues that are important in selecting a set of tools for the development of a

particular software system, including tools for requirements tracking, design modeling,

implementation, build automation, and testing. [Understanding]

6) Demonstrate the capability to use software tools in support of the development of a

software product of medium size. [Understanding]

7) Use a modern IDE and debugger for security-minded debugging and testing. [Applying]

8) Explain the risks with misusing interfaces with third-party code and how to correctly use

third-party code. [Understanding]

9) Use static and dynamic tools to identify programming faults. [Applying]

SE/Requirements Engineering KU Learning Outcomes

1) Describe the key components of a use case or similar description of some behavior that is

required for a system. [Understanding]

2) Describe how the requirements engineering process supports the elicitation and validation

of behavioral requirements. [Understanding]

3) Interpret a given requirements model for a simple software system. [Understanding]

4) Write system requirements from a client concept/specification that incorporate threat

models. [Applying]

5) Write user narratives in preparation for building a piece of software. [Applying]

6) Describe important ethical issues to consider in computer security, including ethical issues

associated with fixing or not fixing. [Understanding]

7) Describe the concepts of risk, threats, vulnerabilities and attack vectors (including the fact

that there is no such thing as perfect security). [Understanding]

8) Explain the concept of trust and trustworthiness. [Understanding]

9) Explain the concepts of authentication, authorization, access control. [Understanding]

SE/Software Design KU Learning Outcomes

1) Describe different system design principles: levels of abstraction (architectural design and

detailed design), separation of concerns, information hiding, coupling and cohesion, re-use

of standard structures. [Understanding]

2) Analyze an existing software implementation and make suggestions to improve security in

its design. [Analyzing]

3) Implement security improvements in an existing software implementation. [Applying]

4) Describe standard components for security operations, and explain the benefits of their use

instead of re- inventing fundamentals operations. [Understanding]

5) Describe the concept of mediation and the principle of complete mediation. [Understanding]

6) Describe the cost and tradeoffs associated with designing security into a product.

[Understanding]

7) Describe the requirements for integrating security into the software development lifecycle.

[Understanding]

8) Explain the concept of trusted computing including trusted computing base and attack

surface and the principle of minimizing trusted. [Understanding]

SE/Software Construction KU Learning Outcomes

1) Describe techniques, coding idioms and mechanisms for implementing designs to achieve

desired properties such as reliability, efficiency, and robustness. [Understanding]

2) Classify robust code using exception handling mechanisms. [Understanding]

3) Describe secure coding and defensive coding practices. [Understanding]

4) Analyze a retired system for actionable attack information. [Analyzing]

5) Describe the process of analyzing and implementing changes to code base developed for a

specific project. [Understanding]

6) Edit a simple program to remove common vulnerabilities, such as buffer overflows, integer

overflows and race conditions, and test to insure the components are resilient to input and

run-time errors. [Applying]

7) Diagram use cases. [Applying]

8) Examine the vulnerabilities in a given development process to an insider inserting

undetected backdoor insertion. [Analyzing]

9) Use a defined coding standard in a small software project. [Applying]

SE/Software Verification and Validation KU Learning Outcomes

1) Distinguish between program validation and verification. [Analyzing]

2) Describe the role that tools can play in the validation of software. [Understanding]

3) Describe among the different types and levels of testing (unit, integration, systems, and

 acceptance). [Understanding]

4) Describe techniques to identify and select optimal and significant test cases for integration,

 regression and system testing. [Understanding]

5) Use a defect tracking tool to manage software defects in a small software project.

 [Applying]

6) Discuss the limitations of testing in a particular domain. [Understanding]

7) Describe input validation and data sanitization including how code is tested for input

handling errors and the impact this has on security. [Understanding]

SE/Software Evolution KU Learning Outcomes

1) Identify the principal issues associated with software evolution and explain their impact on

the software lifecycle. [Remembering]

2) Use refactoring in the process of modifying a software component. [Applying]

3) Discuss the challenges of evolving systems in a changing environment. [Understanding]

4) Outline the process of regression testing and its role in release management. [Analyzing]

5) Discuss the advantages and disadvantages of different types of software reuse.

[Understanding]

6) Describe software development best practices for minimizing vulnerabilities in programming

code. [Understanding]

SE/Software Reliability KU Learning Outcomes

1) Explain the problems that exist in achieving very high levels of reliability. [Understanding]

2) Describe how software reliability contributes to system reliability. [Understanding]

3) Identify ways to apply redundancy to achieve fault tolerance for a medium-sized

application. [Remembering]

4) Analyze OOP design patterns and explain how they impact reliability and security.

[Analyzing]

5) List approaches to minimizing faults that can be applied at each stage of the software

lifecycle. [Remembering]

System Fundamentals (SF) Knowledge Area

SF/Computational Paradigms KU Learning Outcomes

1) List commonly encountered patterns of how computations are organized. [Remembering]

2) Identify the basic building blocks of computers and their role in the historical development

of computer architecture. [Remembering]

3) Discuss the differences between single thread and multiple thread, single server and

multiple server models. [Understanding]

4) Illustrate performance of simple sequential and parallel versions of a program with different

problem sizes. [Applying]

5) Recognize security implications related to emerging computational paradigms.

[Remembering]

SF/Cross-Layer Communications KU Learning Outcomes

1) Describe how computing systems are constructed of layers upon layers, based on

separation of concerns, with well-defined interfaces, hiding details of low layers from the

higher layers. [Understanding]

2) Implement a simple program using methods of layering, error detection and recovery, and

reflection of error status across layers. [Applying]

3) Investigate bugs in a layered program using tools for program tracing, single stepping, and

debugging. [Applying]

Social Issues and Professional Practice (SP) Knowledge Area

SP/Social Context KU Learning Outcomes

1) Describe positive and negative ways in which computer technology (networks, mobile

computing, cloud computing) alters modes of social interaction at the personal level.

[Understanding]

2) Interpret developers’ assumptions and values embedded in hardware and software design,

especially as they pertain to usability for diverse populations including under-represented

populations and the disabled. [Understanding]

3) Interpret the social context of a given design and its implementation. [Understanding]

4) Describe the impact of the underrepresentation of diverse populations in the computing

profession (e.g., industry culture, product diversity). [Understanding]

SP/Analytical Tools KU Learning Outcomes

1) Analyze stakeholder positions in a given situation. [Analyzing]

2) Discuss ethical/social tradeoffs in technical decisions. [Understanding]

3) Describe user responsibilities related to the handling of information in both personal and

enterprise computing. [Understanding]

4) Describe potential cyber attacks and the actors that might perform them. [Understanding]

SP/Professional Ethics KU Learning Outcomes

1) Discuss various types of ethical issues and dilemmas in both personal and enterprise

computing. [Understanding]

2) Explain recent and historical legislation related to digital privacy, unlawful access, and

digital piracy, cyber defense, and computing ethics. [Understanding]

3) Analyze the impact of Acceptable Use Policies and Online Codes of Conduct on employee

behavior and choices in the digital space. [Analyzing]

4) Summarize case studies related to ethics. [Understanding]

SP/Intellectual Property KU Learning Outcomes

1) Explain the terms intellectual property, fair-use, copyright, and plagiarism. [Understanding]

2) Discuss the key pieces of legislation related to fair-use, plagiarism, and intellectual property

copyrights. [Understanding]

3) Summarize laws, both national and international, related to code patents and intellectual

property copyrights. [Understanding]

SP/Privacy and Civil Liberties KU Learning Outcomes

1) Apply solutions to privacy threats in transactional databases and data warehouses.

[Applying]

2) Discuss the role of data collection in the implementation of pervasive surveillance systems

(e.g., RFID, face recognition, mobile computing). [Understanding]

3) Investigate the impact of technological solutions to privacy problems. [Applying]

SP/Professional Communication KU Learning Outcomes

1) Demonstrate competency in oral, written, and visual communication in the computing

profession. [Understanding]

2) Distinguish between verbal and nonverbal communication. [Analyzing]

3) Demonstrate a broad grasp of communication theories as they apply to communication in

the world of technology. [Understanding]

SP/Sustainability KU Learning Outcomes

1) Describe the economic, social, and environmental impacts of computing. [Understanding]

2) Discuss strategies used to assess and lessen the carbon footprint of materials and

equipment used in computing. [Understanding]

3) Summarize case studies related to sustainable computing efforts. [Understanding]

SP/Security Policies, Laws and Computer Crime KU Learning Outcomes

1) List examples of computer crimes and social engineering incidents with societal impact.

[Remembering]

2) Interpret laws that apply to computer crimes. [Understanding]

3) Describe the motivation and ramifications of cyber terrorism and criminal hacking.

[Understanding]

4) Examine the ethical and legal issues surrounding the misuse of access and various

breaches in security. [Analyzing]

5) Write a company-wide policy, which includes procedures for managing passwords,

avoiding social engineering attacks, and employee monitoring. [Applying]

Assessment Metrics

This section presents all the student learning outcomes in the abridged version of the CS2013

Body of Knowledge as sample assessment rubrics, organized by Knowledge Area (KA) and

subsequently by Knowledge Unit (KU). The learning outcomes are expressed using actions verbs

from the cognitive domain of Bloom’s Revised Taxonomy

(http://ccecc.acm.org/assessment/blooms). The ACM CCECC uses a structured assessment rubric

comprised of three tiers: “emerging”, “developed”, and “highly developed.” Typically as the level of

student achievement progresses from “emerging” to “highly developed”, the level of Bloom’s verbs

also increases from the lower order thinking skills (LOTS) to the higher order thinking skills

(HOTS).

Cybersecurity-related learning outcomes, except for the Information Assurance and Security (IAS)

KA, are easily identified in red font.

Learning Outcome Assessment Rubric

AL. Algorithms and
Complexity KA

Emerging Developed
Highly
Developed

AL/Basic Analysis Knowledge Unit

1. Explain the differences among
best, average, and worst case
behaviors of an algorithm.

Label best, average,
and worst bounds in a
plot of a common
function.

Explain the
differences among
best, average, and
worst case behaviors
of an algorithm.

Illustrate the
differences among
best, average, and
worst case behaviors
of an algorithm.

2. Calculate informally the time
and space complexity of simple
algorithms.

Discuss the time and
space complexity of
simple algorithms.

Calculate informally
the time and space
complexity of simple
algorithms.

Deduce the
complexity class of an
algorithm by
identifying loop
nesting (for linear and
above complexity
classes) or repeatedly
dividing by a constant
(logarithmic).

3. Explain Big O notation. State the formal
definition of Big O
notation.

Paraphrase the
mathematical
definition of Big O.

Illustrate Big O
notation.

4. Classify algorithms based
upon their Big O notation.

Recall Big O notation
of common
algorithms.

Explain, in words, why
an algorithm belongs
to a given complexity
class.

Investigate the
complexity class of a
newly presented
algorithm.

5. Contrast standard complexity
classes.

Illustrate a few of the
standard complexity
classes.

Contrast standard
complexity classes.

Evaluate standard
complexity classes to
classify algorithms
into "efficient" and
"inefficient".

6. Execute algorithms on input of
various sizes and compare
performance.

Discuss algorithms on
input of various sizes
and compare
performance.

Execute algorithms on
input of various sizes
and compare
performance.

Compare algorithms
on input of various
sizes and compare
performance.

7. Analyze time and space trade-
offs in algorithms.

Describe time and
space trade-offs in
algorithms.

Analyze time and
space trade-offs in
algorithms.

Evaluate time and
space trade-offs in
algorithms.

8. Explain the importance of
writing secure and robust
programs.

Recall the definitions
of security and
robustness in
programs.

Explain the
importance of writing
secure and robust
programs.

Exemplify a technique
to make a program
more secure or more
robust.

AL/Algorithmic Strategies Knowledge Unit

1. List examples of direct and
indirect information flows.

Recognize conditional
statements and
repetitive structures
that can manipulate
the information flow.

List examples of direct
and indirect
information flows.

Implement a given
information flow and
produce an output
based on different
inputs.

2. Identify a variety of data
structures including stacks,
queues, priority queues,
references, linked structures,
resizable arrays, trees, graphs,
and hash tables.

List advantages and
disadvantages for
each data structure.

Identify a variety of
data structures
including stacks,
queues, priority
queues, references,
linked structures,
resizable arrays,
trees, graphs, and
hash tables.

Implement each data
structure and compare
their complexities in
time performance
based on data input
and structure of the
data.

3. Demonstrate how to access
certain positions of an array.

Recall the syntax for
array access; recall
how to determine the
length of an array.

Describe how to
access the midpoint
element of an array
and the last element
of an array, given the
length of an array.

Implement a method
that given an array as
an argument will print
alternatively the
elements of the array
from the front and the
end until find the
midpoint.

4. Demonstrate which data
model (list, set, hash table, tree,
or graph) is appropriate for
solving a problem.

List advantages and
disadvantages of each
data model for a given
problem.

Demonstrate which
data model (list, set,
hash table, tree, or
graph) is appropriate
for solving a problem.

Test a data model with
different data formats
(include duplicates,
ascending and
descending order, and
random order).

5. Compare and contrast
approaches for resolving
collisions in hash tables, e.g.,
linear probing, quadratic probing,
double hashing, rehashing, and

List collision resolution
schemes.

Compare and contrast
approaches for
resolving collisions in
hash tables, e.g.,
linear probing,

Evlauate code that
uses collision
resolution to perform
key-value pair
insertions and

chaining. quadratic probing,
double hashing,
rehashing, and
chaining.

retrievals in a hash
table.

6. Assess secure
programming by writing a
program that checks
boundaries in an array as an
example of a buffer
over/underflow.

Explain underflow and
overflow.

Assess secure
programming by
writing a program that
checks boundaries in
an array as an
example of a buffer
over/underflow.

Create unit tests to
verify the boundary
checks.

7. Implement a recursive solution
to a problem.

Identify a recursive
pattern in a
mathematical series
(e.g., geometric or
harmonic series).

Implement a recursive
solution to a problem.

Examine a recursive
solution to a problem.

AL/Fundamental Data Structures and Algorithms Knowledge Unit

1. Implement basic numerical
algorithms.

Explain convergence
series as a usage of
sigma or product.

Implement basic
numerical algorithms.

Estimate the a value
by using convergence
series.

2. Implement simple search
algorithms and explain the
differences in their time
complexities.

Name the linear and
binary search
.algorithms; state their
time complexities.

Implement a method
that takes a sorted
array and performs
binary search; explain
why its time
complexity is
logarithmic.

Compare complexities
of both
implementations and
define assumptions
that make algorithms
work as optimal.

3. Implement common quadratic and
O(N log N) sorting algorithms.

Demonstrate the algorithm of
mergesort by using a numeric
array.

Implement the merge
algorithm in mergesort;
implement the partition
algorithm in quicksort.

Implement mergesort and
quicksort from scratch.

4. Describe the implementation
of hash tables, including collision
avoidance and resolution.

Explain the general
idea of a hash table
(i.e., exploit the
constant-time access
for an array). Explain
the need for collision
resolution strategies.

Describe the
implementation of
hash tables, including
collision avoidance
and resolution.

Given a hash function,
create code that
inserts a key-value
pair into a hash table
and code that
retrieves a value given
a key; both codes
should take collision
resolution into
consideration.

5. Discuss the runtime and
memory efficiency of principal
algorithms for sorting, searching,
and hashing.

Recall the worst-case
runtime and memory
efficient of principal
algorithms.

Discuss the runtime
and memory efficiency
of principal algorithms
for sorting, searching,

Implement different
collision resolutions
for a hash table and
compare the number

and hashing. of rehashing for each
resolutions; discuss
the time performance.

6. Discuss factors other than
computational efficiency that
influence the choice of
algorithms, such as
programming time,
maintainability, and the use of
application-specific patterns in
the input data.

List other factors other
than computational
efficiency that ought to
be considered when
choosing an algorithm.

Discuss factors other
than computational
efficiency that
influence the choice of
algorithms, such as
programming time,
maintainability, and
the use of application-
specific patterns in the
input data.

Test an algorithm and
consider
computational
efficiency factors and
verify their impact in
terms of time and
space.

7. Explain how tree balance
affects the efficiency of various
binary search tree operations.

List differences
between a balanced
search tree and a
degenerate tree.

Explain how tree
balance affects the
efficiency of various
binary search tree
operations.

Compare worst case
scenarios of a
balance-tree vs a
regular BST.

8. Solve problems using
fundamental graph algorithms,
including depth-first and breadth-
first search.

State the differences
between depth-first
and breadth-first
search.

Solve problems using
fundamental graph
algorithms, including
depth-first and
breadth-first search.

Design algorithms to
find strongly
connected
components based on
the principles of
depth-first search.

AL/Basic Automata, Computability and Complexity Knowledge Unit

1. Use a regular expression to
represent a specified language.

Explain what regular
expressions are useful
and their impact in a
programming
language.

Use a regular
expression to
represent a specified
language.

Diagram a state
diagram to express
the recognition of a
regular expression in
a state machine.

2. Describe a deterministic finite
state machine to accept a
specified language.

List the possible
states that a finite
state machine can
have to accept a
specified language.

Describe a
deterministic finite
state machine to
accept a specified
language.

Design a deterministic
finite state machine to
accept a specified
language.

3. Explain the role of random
numbers in security, beyond
just cryptography (e.g.,
password generation,
randomized algorithms to avoid
algorithmic denial of service
attacks).

Diagram a state
machine that will
illustrate how a
machine will match a
valid/invalid password.

Explain the role of
random numbers in
security, beyond just
cryptography (e.g.
password generation,
randomized
algorithms to avoid
algorithmic denial of
service attacks).

Create a brute-force
algorithm that
attempts to match a
password generated
by random characters.

4. Discuss the concept of finite
state machines.

Recognize the input,
output, and the states
a finite state machine
has.

Discuss the concept of
finite state machines.

Write a state machine
that validates a given
pattern based on a
given rules.

5. Explain why the halting problem
has no algorithmic solution.

Recognize problems
that are considered to

Explain why the
halting problem has

Illustrate the proof of
the halting problem by

be undecidable. no algorithmic
solution.

demonstrating Turing
machines.

Learning Outcome Assessment Rubric

AR. Architecture and
Organization KA

Emerging Developed
Highly
Developed

AR/Machine Level Representation of Data Knowledge Unit

1. Explain why everything is
data, including instructions, in
computers.

Recognize why
everything is data,
including instructions,
in computers.

Explain why
everything is data,
including instructions,
in computers.

Investigate why
everything is data,
including instructions,
in computers.

2. Explain reasons for using
alternative formats to represent
numerical data.

Recognize the
reasons for using
alternative formats to
represent numerical
data.

Explain reasons for
using alternative
formats to represent
numerical data.

Apply alternative
formats to represent
numerical data.

3. Explain how fixed-length
number representations affect
accuracy and precision.

Define fixed-length
number
representations.

Explain how fixed-
length number
representations affect
accuracy and
precision.

Illustrate how fixed-
length number
representations affect
accuracy and
precision.

4. Describe the internal
representation of non-numeric
data, such as characters,
strings, records, and arrays.

Define the internal
representation of non-
numeric data, such as
characters, strings,
records, and arrays.

Describe the internal
representation of non-
numeric data, such as
characters, strings,
records, and arrays.

Illustrate internal
representation of non-
numeric data, such as
characters, strings,
records, and arrays.

5. Convert numerical data from
one format to another, such as,
negative integers into sign-
magnitude and two’s-
complement representations.

Describe how to
convert numerical
data from one format
to another.

Convert numerical
data from one format
to another, such as,
negative integers into
sign-magnitude and
two’s-complement
representations.

Compare and contrast
different methods for
converting numerical
data from one format
to another.

AR/Assembly Level Machine Organization Knowledge Unit

1. Explain the organization of the
classical von Neumann machine
and its major functional units.

Define the
organization of the
classical von
Neumann machine
and its major
functional units.

Explain the
organization of the
classical von
Neumann machine
and its major
functional units.

Diagram the
organization of the
classical von
Neumann machine
and its major
functional units.

2. Demonstrate how high-level
language patterns map to
assembly/machine language,
including subroutine calls.

Recognize how high-
level language
patterns map to
assembly/machine
language, including
subroutine calls.

Demonstrate how
high-level language
patterns map to
assembly/machine
language, including
subroutine calls.

Diagram high-level
language patterns
map to
assembly/machine
language, including
subroutine calls.

3. Explain the basic concepts of
interrupts and I/O operations.

List basic concepts of
interrupts and I/O
operations.

Explain the basic
concepts of interrupts
and I/O operations.

Implement basic
concepts of interrupts
and I/O operations.

4. Write simple assembly
language program segments.

Explain simple
assembly language
program segments.

Write simple assembly
language program
segments.

Write more complex
assembly language
program segments.

AR/Memory System Organization and Architecture Knowledge Unit

1. Identify the main types of
memory technology and their
relative cost and performance.

Name the main types
of memory technology
(e.g., SRAM, DRAM,
Flash, magnetic disk).

Identify the main types
of memory technology
(e.g., SRAM, DRAM,
Flash, magnetic disk)
and their relative cost
and performance.

Differentiate the main
types of memory
technology (e.g.,
SRAM, DRAM, Flash,
magnetic disk) and
discuss their relative
cost and performance.

2. Explain the effect of memory
latency on running time.

Recognize the effect
of memory latency on
running time.

Explain the effect of
memory latency on
running time.

Calculate the effect of
memory latency on
running time.

3. Describe how the use of
memory hierarchy is used to
reduce the effective memory
latency.

Recall how the use of
memory hierarchy is
used to reduce the
effective memory
latency.

Describe how the use
of memory hierarchy
(e.g., cache, virtual
memory) is used to
reduce the effective
memory latency.

Investigate the use of
memory hierarchy to
reduce the effective
memory latency.

Learning Outcome Assessment Rubric

CN. Computational
Science KA

Emerging Developed
Highly
Developed

CN/Introduction to Modeling and Simulation Knowledge Unit

1. Explain the concept of
modeling and the use of
abstraction that allows the use of
a machine to solve a problem.

Define the concept of
modeling and the use
of abstraction that
allows the use of a
machine to solve a
problem.

Explain the concept of
modeling and the use
of abstraction that
allows the use of a
machine to solve a
problem.

Evaluate the concept
of modeling and the
use of abstraction that
allows the use of a
machine to solve a
problem.

2. Describe the relationship
between modeling and simulation,
i.e., thinking of simulation as
dynamic modeling.

List the relationships
between modeling and
simulation

Describe the
relationship between
modeling and
simulation, i.e.,
thinking of simulation
as dynamic modeling.

Illustrate the
relationship between
modeling and
simulation, i.e.,
thinking of simulation
as dynamic modeling.

3. Differentiate among the
different types of simulations,
including physical simulations,
human-guided simulations, and
virtual reality.

Identify the different
types of simulations,
including physical
simulations, human-
guided simulations,
and virtual reality.

Differentiate among
the different types of
simulations, including
physical simulations,
human-guided
simulations, and virtual
reality.

Investigate the
different types of
simulations, including
physical simulations,
human-guided
simulations, and virtual
reality.

CN/Modeling and Simulation Knowledge Unit

1. Explain and give examples of
the benefits of simulation and
modeling in a range of important
application areas.

Identify the benefits of
simulation and
modeling in a range of
important application
areas.

Explain the benefits of
simulation and
modeling in a range of
important application
areas.

Investigate and show,
using examples, the
benefits of simulation
and modeling in a
range of important
application areas.

CN/Processing Knowledge Unit

1. Describe or sketch a workflow
for an existing computational
process such as the creation of a
graph based on experimental
data.

Identify a workflow for
an existing
computational process
such as the creation of
a graph based on
experimental data.

Describe a workflow
for an existing
computational process
such as the creation of
a graph based on
experimental data.

Diagram a workflow for
an existing
computational process
such as the creation of
a graph based on
experimental data.

2. Describe the process of
converting an algorithm to
machine-executable code.

Define the process of
converting an
algorithm to machine-
executable code.

Describe the process
of converting an
algorithm to machine-
executable code.

Apply the process of
converting an
algorithm to machine-
executable code.

3. Summarize the phases of
software development and
compare several common
lifecycle models.

Identify the phases of
software development
and compare several
common lifecycle
models.

Summarize the phases
of software
development and
compare several
common lifecycle
models.

Diagram the phases of
software development
and compare several
common lifecycle
models.

4. Describe underflow, overflow,
round off, and truncation errors in
data representations.

Explain how data is
represented in a
machine

Describe underflow,
overflow, round
off, and truncation
errors in data
representations.

Calculate results when
there is an underflow,
overflow, round off,
and truncation errors.

5. Describe potential cyber
attacks involving digital data.

Identify potential cyber
attacks involving digital

Describe potential
cyber attacks involving

Examine the risks of
potential cyber attacks

data. digital data. involving digital data.

Learning Outcome Assessment Rubric

DS. Discrete Structures
KA

Emerging Developed Highly
Developed

DS/Sets, Relations, and Functions Knowledge Unit

1. Explain with examples the
basic terminology of functions,
relations, and sets.

Identify the defining
features of functions,
relations, and sets.

Explain with examples
the basic terminology
of functions, relations,
and sets.

Use function, relations,
and set terminology in
a correct and
meaningful way.

2. Perform the operations
associated with sets, functions,
and relations.

Describe the
operations associated
with sets, functions,
and relations.

Perform the
operations associated
with sets, functions,
and relations.

Compare the
operations of sets,
functions, and
relations.

3. Compare practical examples
to the appropriate set, function,
or relation model, and interpret
the associated operations and
terminology in context .

Implement a solution
to a programming
problem using a
particular set, function,
or relation model.

Compare practical
examples to the
appropriate set,
function, or relation
model, and interpret
the associated
operations and
terminology in context.

Justify the choice of a
particular set, function,
or relation model.

DS/Basic Logic Knowledge Unit

1. Convert logical statements
from informal language to
propositional and predicate logic
expressions.

Recognize the
relationship between
logical statements
from informal language
and propositional and
predicate logic
expressions.

Convert logical
statements from
informal language to
propositional and
predicate logic
expressions.

Produce propositional
and predicate logic
expressions from a
given logical statement
from an informal
language.

2. Apply formal logic proofs
and/or informal, but rigorous,
logical reasoning to real
problems such as predicting the
behavior of software or solving
problems such as puzzles.

Describe the steps in
formal logic proofs
and/or informal logical
reasoning to solve real
problems.

Apply formal logic
proofs and/or informal,
but rigorous, logical
reasoning to real
problems such as
predicting the
behavior of software
or solving problems
such as puzzles.

Compare different
logic proofs and
informal logical
reasoning to determine
correct methods to
solve real problems.

3. Use the rules of inference to Discuss the rules of Use the rules of Analyze the rules of inference to

construct proofs in propositional
and predicate logic.

inference to construct
proofs in propositional
and predicate logic.

inference to construct
proofs in propositional
and predicate logic.

construct proofs in propositional and
predicate logic.

4. Describe how symbolic logic
can be used to model real-life
situations or applications,
including those arising in
computing contexts such as
software analysis (e.g. program
correctness), database queries,
and algorithms.

List ways that symbolic
logic can be used to
model real-life
situations or
applications.

Describe how
symbolic logic can be
used to model real-life
situations or
applications, including
those arising in
computing contexts
such as software
analysis (e.g. program
correctness),
database queries, and
algorithms.

Use symbolic logic to
model real-life
situations.

5. Apply formal methods of
symbolic propositional and
predicate logic, such as
calculating validity of formulae
and computing normal forms.

Demonstrate formal
methods of symbolic
propositional and
predicate logic.

Apply formal methods
of symbolic
propositional and
predicate logic, such
as calculating validity
of formulae and
computing normal
forms.

Distinguish between
formal methods of
propositional and
predicate logic to
determine the most
effective solutions to a
given problem.

6. Describe the strengths and
limitations of propositional and
predicate logic.

List the strengths and
limitations of
propositional and
predicate logic.

Describe the strengths
and limitations of
propositional and
predicate logic.

Illustrate the strengths
and limitations of
propositional and
predicate logic.

DS/Proof Techniques Knowledge Unit

1. Outline the basic structure of
each proof technique (direct
proof, proof by contradiction,
and induction) described in this
unit.

Use the basic structure
of each proof
technique to solve a
problem.

Outline the basic
structure of each proof
technique (direct
proof, proof by
contradiction, and
induction).

Choose the most
effective proof
technique to solve a
problem.

2. Apply each of the proof
techniques (direct proof, proof
by contradiction, and induction)
correctly in the construction of a
sound argument.

Demonstrate each of
the proof techniques
by correctly
constructing a sound
argument.

Apply each of the
proof techniques
(direct proof, proof by
contradiction, and
induction) correctly in
the construction of a
sound argument.

Use each of the proof
techniques correctly in
the construction of a
sound argument.

3. Deduce the best type of proof
for a given problem.

Compare the different
proof methods.

Deduce the best type
of proof for a given
problem.

Construct a correct
proof using the best
method for a given
problem.

4. Explain the parallels between Identify the parallels Explain the parallels Illustrate the parallels

ideas of mathematical and/or
structural induction to recursion
and recursively defined
structures.

between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.

between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.

between ideas of
mathematical and/or
structural induction to
recursion and
recursively defined
structures.

5. Explain the relationship
between weak and strong
induction and give examples of
the appropriate use of each.

Identify the
relationship between
weak and strong
induction.

Explain the
relationship between
weak and strong
induction and give
examples of the
appropriate use of
each.

Solve problems using
both weak and strong
induction.

DS/Basics of Counting Knowledge Unit

1. Apply counting arguments,
including sum and product rules,
inclusion-exclusion principle and
arithmetic/geometric
progressions.

Describe counting
arguments.

Apply counting
arguments, including
sum and product
rules, inclusion-
exclusion principle
and
arithmetic/geometric
progressions.

Outline counting
arguments.

2. Apply the pigeonhole principle
in the context of a formal proof.

Demonstrate the
pigeonhole principle.

Apply the pigeonhole
principle in the context
of a formal proof.

Analyze the
pigeonhole principle in
the context of a formal
proof.

3. Calculate permutations and
combinations of a set, and
interpret the meaning in the
context of the particular
application.

Explain the calculation
of permutations and
combinations of a set.

Calculate
permutations and
combinations of a set,
and interpret the
meaning in the
context of the
particular application.

Discriminate between
computation of st
permutations and
combinations.

4. Compare real-world
applications to appropriate
counting formalisms.

Use counting
formalisms to solve
real-world applications.

Compare real-world
applications to
appropriate counting
formalisms, such as
determining the
number of ways to
arrange people
around a table,
subject to constraints
on the seating
arrangement, or the
number of ways to
determine certain
hands in cards (e.g., a
full house).

Choose appropriate
counting formalisms to
solve real-world
applications.

5. Solve a variety of basic
recurrence relations.

Demonstrate a variety
of basic recurrence
relations.

Solve a variety of
basic recurrence
relations.

Compare a variety of
basic recurrence
relations.

6. Analyze a problem to
determine underlying recurrence
relations.

Carry out a problem
with an underlying
recurrence relation.

Analyze a problem to
determine underlying
recurrence relations.

Evaluate a problem
with an underlying
recurrence relation.

7. Perform computations
involving modular arithmetic.

Discuss computations
involving modular
arithmetic.

Perform computations
involving modular
arithmetic.

Examine computations
involving modular
arithmetic.

DS/Graphs and Trees Knowledge Unit

1. Illustrate the basic
terminology of graph theory
including properties and special
cases for each type of
graph/tree.

Describe the basic
terminology of graph
theory.

Illustrate the basic
terminology of graph
theory including
properties and special
cases for each type of
graph/tree.

Outline the basic
terminology of graph
theory.

2. Demonstrate different
traversal methods for trees and
graphs, including pre-, post-,
and in-order traversal of trees.

List the different
traversal methods for
trees and graphs

Demonstrate different
traversal methods for
trees and graphs,
including pre-, post-,
and in-order traversal
of trees.

Execute different
traversal methods for
trees and graphs.

3. Solve a variety of real-world
problems in computer science
using appropriate forms of
graphs and trees, such as
representing a network topology
or the organization of a
hierarchical file system.

Discuss a variety of
real-world problems in
computer science
using appropriate
forms of graphs and
trees.

Solve a variety of real-
world problems in
computer science
using appropriate
forms of graphs and
trees, such as
representing a
network topology or
the organization of a
hierarchical file
system.

Distinguish between
real-world problems
solvable by using
graphs and trees.

4. Implement and use balanced
trees and B-trees.

Explain balanced trees
and B-trees.

Implement and use
balanced trees and B-
trees.

Analyze the use of
balanced trees and B-
trees.

5. Implement graph algorithms,
i.e., graph search, union-find,
minimum spanning trees, and
shortest paths.

Classify graph
algorithms.

Implement graph
algorithms, i.e., graph
search, union-find,
minimum spanning
trees, and shortest
paths.

Categorize different
implementations of
graph algorithms.

6. Demonstrate how concepts
from graphs and trees appear in
data structures, algorithms,

Identify how concepts
from graphs and trees
appear in data

Demonstrate how
concepts from graphs
and trees appear in

Implement data
structures, algorithms,
proof techniques, and

proof techniques (structural
induction), and counting.

structures, algorithms,
proof techniques, and
counting.

data structures,
algorithms, proof
techniques (structural
induction), and
counting.

counting using graphs
and trees.

7. Describe binary search trees
and AVL trees.

Define binary search
and AVL trees.

Describe binary
search trees and AVL
trees.

Apply binary search
and AVL trees.

8. Explain complexity in the ideal
and in the worst case scenario
for both implementations.

State complexity in the
ideal and in the worst
case scenario for both
implementations.

Explain complexity in
the ideal and in the
worst case scenario
for both
implementations.

Calculate complexity in
the ideal and in the
worst case scenario for
both implementations.

DS/Discrete Probability Knowledge Unit

1. Calculate probabilities of
events and expectations of
random variables for elementary
problems.

Exemplify probabilities
of events and
expectations of
random variables for
elementary problems
such as games of
chance.

Calculate probabilities
of events and
expectations of
random variables for
elementary problems
such as games of
chance.

Examine probabilities
of events and
expectations of
random variables for
elementary problems
such as games of
chance.

2. Differentiate between
dependent and independent
events.

Identify dependent and
independent events.

Differentiate between
dependent and
independent events.

Illustrate dependent
and independent
events.

3. Identify a case of the binomial
distribution and compute a
probability using that distribution.

Demonstrate a
probability computed
using a binomial
distribution.

Identify a case of the
binomial distribution
and compute a
probability using that
distribution.

Analyze a probability
computed using
binomial distribution.

4. Apply Bayes theorem to
determine conditional
probabilities in a problem.

Explain Bayes
theorem to determine
conditional
probabilities in a
problem.

Apply Bayes theorem
to determine
conditional
probabilities in a
problem.

Outline Bayes theorem
to determine
conditional
probabilities in a
problem.

5. Apply the tools of probability
to solve problems such as the
average case analysis of
algorithms or analyzing hashing.

Discuss the tools of
probability to solve
problems such as the
average case analysis
of algorithms or
analyzing hashing.

Apply the tools of
probability to solve
problems such as the
average case analysis
of algorithms or
analyzing hashing.

Analyze the tools of
probability in solving
problems such as the
average case analysis
of algorithms or
analyzing hashing.

Learning Outcome Assessment Rubric

GV. Graphics and
Visualization KA

Emerging Developed
Highly
Developed

GV/Fundamental Concepts Knowledge Unit

1. Explain the progression of
Dimension and Coordinate
System.

Define dimensional
and coordinate
Systems.

Explain how to use
dimensions and
coordinate systems.

Compare
transformation and
changes in dimension
and coordinate
systems for 2D and 3D
design.

2. Describe common uses of
digital presentation to human
senses. (e.g., computer graphics,
sound, haptic devices).

List a variety of digital
presentation media in
relationship to human
senses.

Describe the choices in
multimodal media.

Choose appropriate
digital presentation
options based on
project need.

3. Explain in general terms how
analog signals can be reasonably
represented by discrete samples,
for example, how images can be
represented by pixels.

List the advantages
and disadvantages of
display devices.

Explain file types and
appropriate use.

Convert image types
according to output
choices.

4. Explain how the limits of human
perception affect choices about
the digital representations.

Define human vision
and the limits in
relationship to
wavelength.

Explain limitations in
choosing digital
representations.

Evaluate the level of
detail in making
choices for project
need.

5. Diagram a simple user
interface using a standard API.

Define a project's
technical options and
tools during pre-
production.

Diagram a simple user
interface using a
standard API.

Construct a simple
user interface using a
standard API.

6. Describe the differences in
usage of file-types. (eg. lossy and
lossless image compression
techniques).

Define file types. Describe the
differences in the
usage of file-types.
(eg. lossy and lossless
image compression
techniques).

Debate the differences
in the usage of file-
types. (eg. lossy and
lossless image
compression
techniques).

7. Describe color models and their
use in graphics display devices.

Define color models. Describe color models
and their use in
graphics display
devices.

Assess color models
and their use in
graphics display
devices.

8. Differentiate vector and raster
rendering, resolution dependence
and independence.

List the advantages
and disadvantages to
pixel vs. vector image
structures.

Differentiate file types,
resolution needs and
appropriate use.

Analyze image types
according to output
choices.

9. Compare techniques for
developing a motion sequence.
(discrete frames vs tweening)

Explain how to create
a basic motion
sequence from
discrete frames.

Compare techniques
for developing a
motion sequence.
(discrete frames vs
tweening)

Create a basic motion
sequence from
discrete frames.

10. Analyze visualization
techniques based on the problem
needs.

Select visualization
techniques.

Analyze visualization
techniques based on
the problem needs.

Defend visualization
techniques to
problem/project.

11.Use a multi-step Design
Process to determine the
problem, assess the audience
and solve the problem.

Define the steps in a
production or design
process.

Use a multi-step
Design Process to
determine the problem,
assess the audience
and solve the problem.

Develop a solution
based on multi-step
design process
principles and produce
a deliverable.

12. Diagram a program that has
dynamic flexibility to multiple
platforms (fluid layout or
responsive design).

Define options in
responsive design.

Diagram a program
that has dynamic
flexibility to multiple
platforms (fluid layout
or responsive design).

Create a multi-platform
responsive design.

13. Describe the conversion
between different types of media.

List media types. Describe the
conversion between
different types of
media.

Convert media types.

14. Compare media delivery
platforms identifying both
security vulnerabilities and
strengths.

Identify security
strengths and
vulnerabilities in
various media delivery
platforms.

Compare media
delivery platforms
identifying both
security vulnerabilities
and strengths.

Evaluate media
delivery platforms'
security strengths and
vulnerabilities.

15. Use good file management
techniques for backup and
disaster planning.

Differentiate file
management options
vulnerabilities and
strengths.

Use good file
management
techniques for backup
and disaster planning.

Test backup
procedures and offsite
storage usage as
needed.

16.Use SWOT (Strength,
Weaknesses, Threats,
Opportunities) and other
analysis methods to help
identify needs.

Define SWOT
Analysis.

Use SWOT Analysis. Evaluate SWOT
Analysis.

Learning Outcome Assessment Rubric

HCI. Human Computer
Interaction KA

Emerging Developed
Highly
Developed

HCI/Foundations Knowledge Unit

1. Discuss why human-centered
software development is
important.

Define human-
centered software.

Discuss why human-
centered software
development is
important.

Defend the importance
of Human Centered
Software.

2. Use a conceptual vocabulary
for analyzing human interaction
with software: affordance,
conceptual model, feedback, and
so forth.

Define HCI vocabulary
and demonstrate how
it is used.

Use a conceptual
vocabulary for
analyzing human
interaction with
software: affordance,
conceptual model,
feedback, etc.

Create a HCI
vocabulary that can be
used to analyze HCI.

3.Illustrate a user-centered design
process that explicitly takes
account of the fact that the user is
not like the developer or their
acquaintances.

Identify user-centered
design process.

Illustrate how user-
centered design
process is developed.

Assess the differences
between the user and
the developer.

4. Implement a simple usability
test for an existing software
application.

Define usability test. Implement a simple
usability test for an
existing software
application.

Hypothesize if the
usability test created
will be successful.

5. Describe the first principles
of security for software design.

List the security
principles related to
software design.

Describe the first
principles of security
for software design.

Assess the importance
of secure software
design principles.

6. Describe why each principle
of secure software design is
important to security and how
to incorporate each principle
into software design.

List principles of
secure software design
and methods for
incorporation.

Describe why each
principle of secure
software design is
important to security
and how to incorporate
each principle into
software design.

Analyze the impact of
the failure to follow
secure software design
principles and
incorporation methods.

7. Explain the interaction
between security and system
usability and the importance for
minimizing the effects of
security mechanisms.

Identify potential
usability issues related
security mechanisms.

Explain the interaction
between security and
system usability and
the importance for
minimizing the effects
of security
mechanisms.

Evaluate the usage of
security mechanisms
measured against
usability affects.

HCI/Designing Interaction Knowledge Unit

1. Illustrate a simple application,
together with help and
documentation, that supports a
graphical user interface.

Design a simple
application using HCI
requirements.

Illustrate a simple
application, together
with help and
documentation, that
supports a graphical
user interface.

Create a complete
application that uses a
graphical interface and
includes technical
documentation.

2. Discuss at least one national or
international user interface design
standard.

Identify national and
international user
interface design
standards.

Discuss at least one
national or
international user
interface design
standard.

Justify at least one
national and one
international user
interface design
standard.

3. Analyze and document the
interface needs of an identified
user group.

List common user
interface needs.

Analyze and document
the interface needs of
an identified user
group.

Assess the
appropriateness of
design standards in
meeting specified user
interface needs.

4. Describe the issues of trust
in interface design with an
example of a high and low trust
system.

List design elements
that make a human-
computer interface
trustworthy.

Describe the issues of
trust in interface design
with an example of a
high and low trust
system.

Create both an
interface design with
high trust and another
with low trust.

Learning Outcome Assessment Rubric

IAS. Information
Assurance and Security
KA

Emerging Developed
Highly
Developed

IAS/Foundational Concepts in Security Knowledge Unit

1. Recognize the importance of
security as a continuous process
and its balancing nature between
protection mechanisms and
availability of data and
information.

Recognize the
importance of security.

Recognize the
importance of security
as a continuous
process and its
balancing nature
between protection
mechanisms and
availability of data and
information.

Explain the importance
of security as a
continuous process
and its balancing
nature between
protection mechanisms
and availability of data
and information.

2. Differentiate between
Information Security and
Information Assurance.

Define Information
Security and
Information
Assurance.

Differentiate between
Information Security
and Information
Assurance.

Compare and contrast
Information Security
and Information
Assurance

3. Describe the concepts of risk,
threats, vulnerabilities, attack
vectors, and exploits (including
the fact that there is no such thing
as perfect security).

Define the concepts of
risk, threats,
vulnerabilities, attack
vectors, and exploits
(including the fact that
there is no such thing
as perfect security).

Describe the concepts
of risk, threats,
vulnerabilities, attack
vectors, and exploits
(including the fact that
there is no such thing
as perfect security).

Apply the concepts of
risk, threats,
vulnerabilities, attack
vectors, and exploits
(including the fact that
there is no such thing
as perfect security) to a
scenario.

4. Explain the importance of
security controls and
countermeasures to minimize
security risk and exposure.

Recognize the
importance of security
controls and
countermeasures to
minimize security risk
and exposure.

Explain the importance
of security controls and
countermeasures to
minimize security risk
and exposure.

Implement one or more
security controls and
countermeasures to
minimize security risk
and exposure.

5. Analyze the tradeoffs of
balancing security properties
(Confidentiality, Integrity,
Availability, as well as
Authentication, Authorization,
Access, Authenticity,
Non-Repudiation, Privacy).

Investigate the
tradeoffs of balancing
security properties
(Confidentiality,
Integrity, Availability,
as well as
Authentication,
Authorization, Access,
Authenticity,
Non-Repudiation,
Privacy).

Distinguish the
tradeoffs of balancing
security properties
(Confidentiality,
Integrity, Availability, as
well as Authentication,
Authorization, Access,
Authenticity,
Non-Repudiation,
Privacy).

Evaluate the tradeoffs
of balancing security
properties
(Confidentiality,
Integrity, Availability,
as well as
Authentication,
Authorization, Access,
Authenticity,
Non-Repudiation,
Privacy).

6. Explain the concepts of trust
and trustworthiness.

Define the concepts of
trust and
trustworthiness.

Explain the concepts of
trust and
trustworthiness.

Diagram trust
relationships.

7. Describe important ethical
issues to consider in security.

Identify important
ethical issues to
consider in security.

Describe important
ethical issues to
consider in security.

Investigate important
ethical issues to
consider in security.

8. Investigate risks to privacy and
anonymity in technology.

Describe risks to
privacy and anonymity
in technology.

Investigate risks to
privacy and anonymity
in technology

Analyze risks to
privacy and anonymity
in technology.

9. Apply cybersecurity principles
to a changing landscape.

Summarize
cybersecurity
principles and how
they are affected by a
changing landscape.

Apply cybersecurity
principles to a changing
landscape

Examine cybersecurity
principles in a
changing landscape.

10. Discuss the benefits of having
multiple layers of defenses.

State the benefits of
having multiple layers
of defense.

Discuss the benefits of
having multiple layers
of defenses.

Implement multiple
layers of defense.

IAS/Principles of Secure Design Knowledge Unit

1. Describe the principle of least
privilege and isolation as applied

Define the principle of
least privilege and

Describe the principle
of least privilege and

Given a scenario,
interpret the concept of

to system design. isolation. isolation as applied to
system design.

least privilege and
isolation as applied to
system design.

2. Summarize the principles of
fail-safe and deny-by-default.

Define the principles of
fail-safe and deny-by-
default.

Summarize the
principles of fail-safe
and deny-by-default.

Differentiate the
principles of fail-safe
and deny-by-default.

3. Discuss the implications of
relying on open design or the
secrecy of design for security.

Recognize the
implications of relying
on open design or the
secrecy of design for
security.

Discuss the
implications of relying
on open design or the
secrecy of design for
security.

Illustrate the
implications of relying
on open design or the
secrecy of design for
security.

4. Explain the goals of end-to-end
data security.

List some of the goals
of end-to-end data
security.

Explain the goals of
end-to-end data
security.

Illustrate using
examples the goals of
end-to-end data
security.

5. Discuss the benefits of having
multiple layers of defenses
(Defense In Depth).

Recognize one or
more of the benefits of
having multiple layers
of defenses (Defense
In Depth).

Discuss the benefits of
having multiple layers
of defenses (Defense
In Depth)

Implement multiple
layers of defenses
(Defense In Depth) for
a given scenario

6. For each stage in the lifecycle
of a product, investigate what
security considerations should be
evaluated.

For each stage in the
lifecycle of a product,
describe what security
considerations should
be evaluated.

For each stage in the
lifecycle of a product,
investigate what
security considerations
should be evaluated.

For each stage in the
lifecycle of a product,
analyze what security
considerations should
be evaluated.

7. Recognize the tradeoffs
associated with designing
security into a product.

Recognize some of the
tradeoffs associated
with designing security
into a product.

Recognize the
tradeoffs associated
with designing security
into a product.

Describe the tradeoffs
associated with
designing security into
a product including
cost and benefits.

IAS/Defensive Programming Knowledge Unit

1. Implement input validation and
data sanitization in applications
as necessary considering
adversarial control of the input
channel.

Explain the importance
of input validation and
data sanitization in
applications
considering
adversarial control of
the input channel.

Implement input
validation and data
sanitization in
applications as
necessary considering
adversarial control of
the input channel.

Analyze the
effectiveness of input
validation and data
sanitization
implemented in
applications
considering adversarial
control of the input
channel.

2. Explain the tradeoffs of
developing a program in a type-
safe language.

List some of the
tradeoffs of developing
a program in a type-
safe language.

Explain the tradeoffs of
developing a program
in a type-safe
language.

Compare and contrast
the tradeoffs of
developing a program
in a type-safe
language.

3. Implement programs that
properly handle exceptions and
error conditions.

Explain the importance
of writing programs
that properly handle
exceptions and error
conditions.

Implement programs
that properly handle
exceptions and error
conditions.

Analyze the
implementation of
exception handling in
programs and error
conditions.

4. Recognize the need to update
software to fix security
vulnerabilities.

Recognize the need to
update software.

Recognize the need to
update software to fix
security vulnerabilities.

Demonstrate the need
to update software to
fix security
vulnerabilities.

IAS/Threats and Attacks Knowledge Unit

1. Identify likely attack types
against standalone and
networked software systems.

Identify some attack
types against software
systems.

Identify likely attack
types against
standalone and
networked software
systems.

Discuss likely attack
types against
standalone and
networked software
systems.

2. Describe risks to privacy and
anonymity in information
systems.

Name risks to privacy
and anonymity in
information systems.

Describe risks to
privacy and anonymity
in information systems.

Investigate risks to
privacy and anonymity
in information systems.

3. Discuss the key principles,
such as membership and trust, of
social engineering.

Recognize the key
principles, such as
membership and trust,
of social engineering.

Discuss the key
principles, such as
membership and trust,
of social engineering.

Illustrate the key
principles, such as
membership and trust,
of social engineering.

IAS/Cryptography Knowledge Unit

1. Explain the purpose of
cryptography and how it is used
to secure data.

State the purpose of
cryptography.

Explain the purpose of
cryptography and how
it is used to secure
data.

Implement
cryptography to secure
data.

2. Define key terms in cryptology. List some key terms in
cryptology.

Define key terms in
cryptology, including
cryptography,
cryptanalysis, cipher,
and cryptographic
algorithm.

Explain key terms in
cryptology, including
cryptography,
cryptanalysis, cipher,
and cryptographic
algorithm.

3. Describe basic methods for
transforming plaintext into
ciphertext.

Identify basic methods
for transforming
plaintext into
ciphertext.

Describe basic
methods for
transforming plaintext
into ciphertext, such as
bit stream and block
cipher.

Implement basic
methods for
transforming plaintext
into ciphertext, such as
bit stream and block
cipher.

4. Explain the difference between
symmetric and asymmetric
encryption and how they are
collectively used to secure digital

Recognize the
difference between
symmetric and
asymmetric encryption

Explain the difference
between symmetric
and asymmetric
encryption and how

Contrast symmetric
and asymmetric
encryption and their
use in secure digital

communications and e-commerce
transactions.

and how they are
collectively used to
secure digital
communications and
e-commerce
transactions.

they are collectively
used to secure digital
communications and e-
commerce
transactions.

communications and e-
commerce
transactions.

IAS/Web Security Knowledge Unit

1. Explain browser and web
security model concepts including
same-origin policy, web sessions,
and secure communication
channels.

Identify one or more
browser and web
security model
concepts.

Explain browser and
web security model
concepts including
same-origin policy, web
sessions, and secure
communication
channels such as TLS.

Apply browser and web
security model
concepts including
same-origin policy,
web sessions, and
secure communication
channels such as TLS.

2. Investigate common
vulnerabilities and attacks in web
applications and the coding
strategies that are used to
mitigate them.

Describe common
vulnerabilities and
attacks in web
applications and the
coding strategies that
are used to mitigate
them.

Investigate common
vulnerabilities and
attacks in web
applications and the
coding strategies that
are used to mitigate
them.

Examine common
vulnerabilities and
attacks in web
applications and the
coding strategies that
are used to mitigate
them.

IAS/Secure Software Engineering Knowledge Unit

1. Write software requirements
that include basic security
specifications.

Interpret software
requirements that
include basic security
specifications.

Write software
requirements that
include basic security
specifications.

Evaluate software
requirements that
include basic security
specifications.

2. Implement a plan to test the
security modules in software.

Summarize a plan to
test the security
modules in software.

Implement a plan to
test the security
modules in software.

Integrate a plan to test
the security modules in
software into the
overall test plan.

3. Investigate security
vulnerabilities in a software at the
requirement and design phases
of the software development life
cycle.

Discuss security
vulnerabilities in a
software at the
requirement and
design phases of the
software development
life cycle.

Investigate security
vulnerabilities in a
software at the
requirement and design
phases of the software
development life cycle.

Analyze security
vulnerabilities in a
software at the
requirement and
design phases of the
software development
life cycle.

Learning Outcome Assessment Rubric

IM/Information
Management KA

Emerging Developed
Highly
Developed

IM/Information Management Concepts Knowledge Unit

1. Describe how humans gain
access to information and data to
support their needs.

List ways in which
humans gain access
to information and
data to support their
needs.

Describe how
humans gain access
to information and
data to support their
needs.

Illustrate ways in
which humans gain
access to information
and data to support
their needs.

2. Describe the advantages and
disadvantages of central
organizational control over data

List the advantages
and disadvantages of
central organizational
control over data.

Describe the
advantages and
disadvantages of
central organizational
control over data.

Assess the advantages
and disadvantages of
central organizational
control over data.

3. Summarize the careers/roles
associated with information
management.

Identify the
careers/roles
associated with
information
management.

Summarize the
careers/roles
associated with
information
management.

Categorize the
careers/roles
associated with
information
management.

4. Differentiate information with
data.

Define information and
data.

Differentiate
information and data.

Compare information
with data.

5. Describe potential system
attacks and the actors that
might perform them.

Identify potential
system attacks and the
actors that might
perform them.

Describe potential
system attacks and the
actors that might
perform them.

Categorize potential
system attacks and the
actors that might
perform them.

6. Describe contingency plans
for various size organizations
to include: business continuity,
disaster recovery and incident
response.

Recognize contingency
plans for various size
organizations to
include: business
continuity, disaster
recovery and incident
response.

Describe contingency
plans for various size
organizations to
include: business
continuity, disaster
recovery and incident
response.

Compare contingency
plans for various size
organizations to
include: business
continuity, disaster
recovery and incident
response.

7. Describe specific plans to
secure data and information.

Recognize specific
plans to secure data
and information.

Describe specific plans
to secure data and
information.

Modify specific plans to
secure data and
information.

8. Discuss vulnerabilities and
failure scenarios in common
forms of information systems.

Identify vulnerabilities
and failure scenarios in
common forms of
information systems.

Discuss vulnerabilities
and failure scenarios in
common forms of
information systems
e.g. SQL injection,
cross-site scripting,
etc.

Analyze vulnerabilities
and failure scenarios in
common forms of
information systems.

IM/Database Systems Knowledge Unit

1. Explain the characteristics that
distinguish the database
approach from the approach of
programming with data files.

Identify the
characteristics that
distinguish the
database approach
from the approach of
programming with data
files.

Explain the
characteristics that
distinguish the
database approach
from the approach of
programming with data
files.

Contrast the
characteristics that
distinguish the
database approach
from the approach of
programming with data
files.

2. Describe the most common
designs for core database system
components including the query
optimizer, query executor, storage
manager, access methods, and
transaction processor.

Define the most
common designs for
core database system
components including
the query optimizer,
query executor,
storage manager,
access methods, and
transaction processor.

Describe the most
common designs for
core database system
components including
the query optimizer,
query executor,
storage manager,
access methods, and
transaction processor.

Categorize the most
common designs for
core database system
components including
the query optimizer,
query executor,
storage manager,
access methods, and
transaction processor.

3. Summarize the basic goals,
functions, and models of
database systems.

Identify the basic
goals, functions, and
models of database
systems.

Summarize the basic
goals, functions, and
models of database
systems.

Assess the basic
goals, functions, and
models of database
systems.

4. Describe the components of a
database system and give
examples of their use.

Identify the
components of a
database system.

Describe the
components of a
database system and
give examples of their
use.

Diagram the
components of a
database system and
give examples of their
use.

5. Describe the roles of major
DBMS functions in a database
system.

Identify major DBMS
functions in a database
system.

Describe the roles of
major DBMS functions
in a database system.

Assess major DBMS
functions and their
roles in a database
system.

6. Explain the concept of data
independence and its importance
in a database system.

Define the concept of
data independence
and its importance in a
database system.

Explain the concept of
data independence
and its importance in a
database system.

Critique the concept of
data independence
and its importance in a
database system.

7. Use a declarative query
language to elicit information from
a database.

Describe using a
declarative query
language to elicit
information from a
database.

Use a declarative
query language to elicit
information from a
database.

Evaluate declarative
query language used
to elicit information
from a database.

8. Describe common security
concerns in database
management systems.

Identify common
security concerns in
database management
systems.

Describe common
security concerns in
database management
systems.

Assess common
security concerns in
database management
systems.

9. Apply security principles to
the design and development of

Discuss security
principles in the design

Apply security
principles to the design

Assess security
principles used in the

database systems and
database structures.

and development of
database systems and
database structures.

and development of
database systems and
database structures.

design and
development of
database systems and
database structures.

IM/Data Modeling Knowledge Unit

1. Contrast appropriate data
models, including internal
structures, for different types of
data.

Diagram appropriate
data models, including
internal structures, for
different types of data.

Contrast appropriate
data models, including
internal structures, for
different types of data.

Evaluate appropriate
data models, including
internal structures, for
different types of data.

2. Describe concepts in modeling
notation (e.g., Entity-Relation
Diagrams or UML) and how they
would be used.

Define concepts in
modeling notation
(e.g., Entity-Relation
Diagrams or UML) and
how they would be
used.

Describe concepts in
modeling notation
(e.g., Entity-Relation
Diagrams or UML) and
how they would be
used.

Illustrate concepts in
modeling notation
(e.g., Entity-Relation
Diagrams or UML) and
how they would be
used.

3. Explain the fundamental
terminology used in the relational
data model.

Define the fundamental
terminology used in the
relational data model.

Explain the
fundamental
terminology used in the
relational data model.

Use fundamental
terminology in a
relational data model.

4. Describe the basic principles of
the relational data model.

Define the basic
principles of the
relational data model.

Describe the basic
principles of the
relational data model.

Apply basic principles
in a relational data
model.

5. Apply the modeling concepts
and notation of the relational data
model.

Explain the modeling
concepts and notation
of the relational data
model.

Apply the modeling
concepts and notation
of the relational data
model.

Examine the modeling
concepts and notation
of the relational data
model.

6. Diagram a relational data
model for a given scenario.

Describe a relational
data model for a given
scenario.

Diagram a relational
data model for a given
scenario.

Analyze a relational
data model for a given
scenario.

7. Describe the basic concepts of
the OO model.

Identify the basic
concepts of the OO
model.

Describe the basic
concepts of the OO
model.

Apply the basic
concepts of the OO
model.

8. Describe the differences
between relational data models
and other models such as semi-
structured or flexible schema
(e.g., JSON, NoSQL).

Recognize the
differences between
relational data models
and other models such
as semi-structured or
flexible schema (e.g.,
JSON, NoSQL).

Describe the
differences between
relational data models
and other models such
as semi-structured or
flexible schema (e.g.,
JSON, NoSQL).

Investigate the
differences between
relational data models
and other models such
as semi-structured or
flexible schema (e.g.,
JSON, NoSQL).

9. Describe relevant security
and privacy issues given a
system and data management
structure.

Identify relevant
security issues in a
given system and data
management structure.

Describe relevant
security issues in a
given system and data
management structure.

Explore and illustrate
relevant security
issues in a given
system and data
management structure.

Learning Outcome Assessment Rubric

NC. Networking and
Communication KA

Emerging Developed
Highly
Developed

NC/Introduction Knowledge Unit

1. Explain the basic structure of
the Internet.

Identify the basic
structure of the
Internet.

Explain the basic
structure of the
Internet.

Diagram the basic
structure of the
internet.

2. Define basic network
terminology.

Recognize basic
network terminology.

Define basic network
terminology, such as
topologies and
protocols.

Describe basic
network terminology.

3. Describe the layered structure
of a typical networked
architecture.

Label the components
of a typical networked
architecture.

Describe the layered
structure of a typical
networked
architecture.

Diagram the layered
structure of a typical
networked
architecture.

4. Diagram the layers of the OSI
model.

Describe the layers of
the OSI model.

Diagram the layers of
the OSI model.

Compare and contrast
the layers of the OSI
model with the TCP/IP
model.

NC/Networked Applications Knowledge Unit

1. List the differences and the
relationships between names
and addresses in a network.

Identify one or more
differences and
relationships between
names and addresses
in a network.

List the differences
and the relationships
between names and
addresses in a
network.

Discuss the
differences and the
relationships between
names and addresses
in a network.

2. Define the principles behind
naming schemes and resource
location.

Define at least one
principle behind
naming schemes and
resource location.

Define the principles
behind naming
schemes and
resource location.

Demonstrate the
principles behind
naming schemes and
resource location.

3. Implement a simple client-
server socket-based application.

Identify the
components of a
simple client-server
socket-based
application.

Implement a simple
client-server socket-
based application.

Integrate a simple
client-server socket-
based application
within a server
program to exchange
data with a client.

NC/Routing and Forwarding Knowledge Unit

1. Describe how packets are
forwarded in an IP network.

Recognize how
packets are forwarded
in an IP network.

Describe how packets
are forwarded in an IP
network.

Illustrate how packets
are forwarded in an IP
network.

2. Differentiate between routing
and switching.

Recognize that routing
and switching are not
the same.

Differentiate between
routing and switching.

Compare and contrast
routing and switching.

NC/Local Area Networks Knowledge Unit

1. Describe how frames are
forwarded in a Local Area
Network.

Recognize how
frames are forwarded
in a Local Area
Network.

Describe how frames
are forwarded in a
Local Area Network.

Illustrate how frames
are forwarded in a
Local Area Network.

2. Describe the resources and
services that Local Area
Networks support.

List resources and
services that Local
Area Networks
support.

Describe the
resources and
services Local Area
Networks support,
such as DHCP and
DNS.

Examine resources
and services in Local
Area Networks.

NC/Mobility Knowledge Unit

1. Describe the organization of a
wireless network.

Identify components of
a wireless network.

Describe the
organization of a
wireless network.

Diagram the
organization of a
wireless network.

2. Describe how wireless
networks support mobile users.

Recognize how
wireless networks
support mobile users.

Describe how wireless
networks support
mobile users.

Implement wireless
network support for
mobile users.

Learning Outcome Assessment Rubric

OS. Operating Systems
KA

Emerging Developed
Highly
Developed

OS/Overview of Operating Systems Knowledge Unit

1. Explain major objectives,
functions and concepts of
modern operating systems.

List some objectives,
functions and
concepts of modern
operating systems.

Explain major
objectives, functions,
and concepts of
modern operating
systems.

Explain in detail most
objectives, functions
and concepts of
modern operating
systems.

2. Describe key features of a
contemporary operating system,
such as scripting, user
interfaces, and updates, with
respect to convenience,
efficiency, and the ability to
evolve.

Identify key features of
a contemporary
operating system,
such as scripting, user
interfaces, and
updates, with respect
to convenience,
efficiency, and the
ability to evolve.

Describe key features
of a contemporary
operating system,
such as scripting, user
interfaces, and
updates, with respect
to convenience,
efficiency, and the
ability to evolve.

Use key features of a
contemporary
operating system,
such as scripting, user
interfaces, and
updates, with respect
to convenience,
efficiency, and the
ability to evolve.

3. Differentiate between
prevailing types of operating
systems, such as networked,
mobile, real-time, and
distributed.

Define prevailing
types of operating
systems, such as
networked, mobile,
real-time, and
distributed.

Differentiate between
prevailing types of
operating systems,
such as networked,
mobile, real-time, and
distributed.

Investigate prevailing
types of operating
systems, such as
networked, mobile,
real-time, and
distributed.

4. Discuss potential threats to
operating systems and the
security features designed to
guard against them.

Identify some potential
threats to operating
systems.

Discuss potential
threats to operating
systems and the
security features
designed to guard
against them.

Investigate potential
threats to operating
systems and the
security features
designed to guard
against them.

OS/Operating System Principles Knowledge Unit

1. Describe the value of APIs
and middleware.

Identify the basic
functions of APIs and
middleware.

Describe the value of
APIs and middleware.

Use APIs and
middleware.

2. Describe how computing
resources are used by
application software and
managed by system software.

Identify which
computing resources
are used by
application software
and managed by
system software.

Describe how
computing resources
are used by
application software
and managed by
system software.

Investigate how
computing resources
are used by
application software
and managed by
system software.

3. Define a device list and a
driver I/O queue.

Recognize a device
list and driver I/O
queue.

Define a device list
and a driver I/O
queue.

Explain the use of a
device list and driver
I/O queue.

OS/Concurrency Knowledge Unit

1. Describe the need for
concurrency within the
framework of an operating
system.

Define concurrency
within the framework
of an operating
system.

Describe the need for
concurrency within the
framework of an
operating system.

Investigate the need
for concurrency within
the framework of an
operating system.

OS/Memory Management Knowledge Unit

1. Describe the principles of
memory management, including

Define the principles
of memory

Describe the
principles of memory

Illustrate the principles
of memory

the function of and need for
cache memory.

management,
including the function
of and need for cache
memory.

management,
including the function
of and need for cache
memory.

management,
including the function
of and need for cache
memory.

2. Describe the principles of
virtual memory as applied to
caching and paging.

List some of the
principles of virtual
memory as applied to
caching and paging.

Describe the
principles of virtual
memory as applied to
caching and paging.

Explain the principles
of virtual memory as
applied to caching and
paging.

3. Define the concept of
thrashing.

Recognize the
concept of thrashing.

Define the concept of
thrashing.

Explain the concept of
thrashing and how to
manage it.

OS/Security and Protection Knowledge Unit

1. Explain the need for
protection and security in an
OS.

Identify the need for
protection and security
in an OS.

Explain the need for
protection and security
in an OS.

Investigate the need
for protection and
security in an OS.

2, Summarize the features of
an operating system used to
provide protection and
security.

Describe some of the
features of an
operating system used
to provide protection
and security.

Summarize the
features and
limitations of an
operating system used
to provide protection
and security.

Implement some of
the features of an
operating system used
to provide protection
and security.

3. Explain the mechanisms
available in an OS to control
access to resources.

List some of the
mechanisms available
in an OS to control
access to resources.

Explain the
mechanisms available
in an OS to control
access to resources.

Implement some of
the mechanisms
available in an OS to
control access to
resources.

OS/Virtual Machines Knowledge Unit

1. Explain the concept of
virtualization and how it is
realized in hardware and
software.

Define the concept of
virtualization and how
it is realized in
hardware and
software.

Explain the concept of
virtualization and how
it is realized in
hardware and
software.

Investigate the
concept of
virtualization and how
it is realized in
hardware and
software.

OS/Device Management Knowledge Unit

1. Explain the relationship
between the physical hardware
and the virtual devices
maintained by the operating
system.

Identify the difference
between physical
hardware and virtual
devices.

Explain the
relationship between
the physical hardware
and the virtual devices
maintained by the
operating system.

Diagram the
relationship between
the physical hardware
and the virtual devices
maintained by the
operating system.

Learning Outcome Assessment Rubric

PL. Programming
Languages KA

Emerging Developed
Highly
Developed

PL/Object-Oriented Programming Knowledge Unit

1. Implement a simple class
hierarchy, including
superclasses and subclasses,
using encapsulation, abstraction,
inheritance, and polymorphism.

Describe a simple
class hierarchy,
including superclasses
and subclasses, using
encapsulation,
abstraction,
inheritance, and
polymorphism.

Implement a simple
class hierarchy,
including superclasses
and subclasses, using
encapsulation,
abstraction,
inheritance, and
polymorphism.

Analyze a simple
class hierarchy,
including superclasses
and subclasses, using
encapsulation,
abstraction,
inheritance, and
polymorphism.

2. Use control flow in a program
using dynamic dispatch.

Describe the best
ways to use flow
control in a program
using dynamic
dispatch.

Use control flow in a
program using
dynamic dispatch.

Contrast control flow
using a static
environment vs a
dynamic environment.

3. Develop secure GUI
applications using modern
GUI development libraries and
tools.

Explain how GUI
applications can be
developed using
modern GUI
development libraries
and tools.

Develop secure GUI
applications using
modern GUI
development libraries
and tools.

Evaluate the
outcomes of a GUI
based on a give input
to interact with the
reactive system.

4. Use private and protected
methods to secure class data
and to demonstrate
encapsulation.

Describe private and
protected methods
and their role in
encapsulation and the
security of class data.

Use private and
protected methods to
secure class data and
to demonstrate
encapsulation.

Analyze private and
protected methods in
relation to
encapsulation and
security of class data.

5. Apply fundamental security
principles and strategies to
software development to
inhibit attacks.

Describe different
software development
security principles.

Use proper software
development security
principles to write a
small program.

Design a program
using good secure
software development
techniques.

6. Illustrate the secure
development lifecycle.

Explain the secure
development lifecycle.

Illustrate the secure
development lifecycle.

Analyze the secure
development lifecycle.

7. Assess secure coding by
checking parameters based on
certain restrictions on data.

Understand the
concept of secure
coding.

Assess secure coding
by checking
parameters based on
certain restrictions on
data.

Develop a program
using the secure
coding methodology.

8. Describe the tenets of OOP:
encapsulation, abstraction,

List the tenets of
OOP:such as

Describe the tenets of
OOP: encapsulation,

Investigate existing
code and the impact

inheritance, and
polymorphism and how they
impact security.

encapsulation,
abstraction,
inheritance, and
polymorphism and
how they are used to
impact security.

abstraction,
inheritance, and
polymorphism and
how they impact
security.

encapsulation,
abstraction,
inheritance, and
polymorphism have on
security.

9. Describe the characteristics of
static, stack, and heap
allocation.

Identify local variables
within the scope of a
method as well as a
global variable such
as a class or main
class variable.

Describe the
characteristics of
static, stack, and heap
allocation.

Implement a program
in such a way the
main method tries to
access global, local,
and instance
variables.

10. Describe the state of the call
stack when calling non-recursive
and recursive subroutines.

Recognize that
recursion is an
optional feature in
OOP languages such
as Java, however is
not part of the
paradigm principles.

Describe the state of
the call stack when
calling non-recursive
and recursive
subroutines.

Illustrate the activation
records storage by
tracing recursive calls
until a method
reaches its base-case.

11. Explain the difference
between method definition and
method calling.

Translate a
instructions from a text
and translate it to a
method definition
based on the
description of the
problem.

Explain the difference
between method
definition and method
calling.

Test methods with
different values as a
parameters to
distinguish between
method calls and
method definitions.

12. Describe confidentiality,
integrity, and availability and
the impact each has on
security.

Define confidentiality,
integrity, and
availability.

Describe
confidentiality,
integrity, and
availability and the
impact each has on
security.

Illustrate
confidentiality,
integrity, and
availability and the
impact each has on
security.

PL/Functional Programming Knowledge Unit

1. Write basic algorithms that
avoid assigning to mutable state
or considering reference
equality.

Discuss how in
functional languages,
rather than mutating
the state of objects,
the objects are simply
returned with the
desired reflected
changes.

Write basic algorithms
that avoid assigning to
mutable state or
considering reference
equality.

Evaluate efficiency by
comparing algorithms
that avoid assigning to
mutable state vs
modifying data
structures values.

2.Compare and contrast the
procedural/functional approach
and the object-oriented
approach.

Differentiate between
different programming
paradigms by mention
advantages and
disadvantages of each

Compare and contrast
the
procedural/functional
approach and the
object-oriented

Apply a function for a
given operation with
the function body
providing a case for
each data variant.

paradigm. approach.

3. Write useful functions that
take and return other functions.

Explain what Lambda
calculus is and how
this principle is used in
computer
programming.

Write useful functions
that take and return
other functions.

Test several functions
with different
definitions to produce
a desired output
based on returning
other functions.

PL/Event-Driven and Reactive Programming Knowledge Unit

1. Write event handlers for use in
reactive systems, such as GUIs.

Design a test case
scenario in how to
interact with a reactive
system; discuss
potential states that
the system may have.

Write event handlers
for use in reactive
systems, such as
GUIs.

Evaluate outcomes
from a GUI by
providing a set of
instructions and
anticipate usability of
the system.

2. Explain why an event-driven
programming style is natural in
domains where programs react
to external events.

Describe an
advantage of having
an event-driven
programming style vs
a pre-defined
programming style.

Explain why an event-
driven programming
style is natural in
domains where
programs react to
external events.

Use an event-driven
style to generate
outcomes that can be
evaluate them.

3. Describe an interactive
system in terms of a model, a
view, and a controller.

Define the notion of
MVC and mention the
advantages of this
model.

Describe an
interactive system in
terms of a model, a
view, and a controller.

Integrate several
active components
and design a reactive
system that
implements the MVC.

4. Describe how event-driven
GUI applications are
structured when guarding
against injection-based
attacks.

Demonstrate what
injection-based
attacks can happen
under a piece of code
that runs in response
of an action.

Describe how event-
driven GUI
applications are
structured when
guarding against
injection-based
attacks.

Implement a GUI
where multiple
selections can be
enabled in such a way
that create a logic
inconsistency on
multiple values
selected.

PL/Basic Type Systems Knowledge Unit

1. Describe examples of
program errors detected by a
type system.

List a set of examples
that occurred in the
past because of a lack
of strong type system.

Describe examples of
program errors
detected by a type
system.

Implement a program
that demonstrates
type-system error.

2. For multiple programming
languages, identify program
properties checked statically and
program properties checked
dynamically.

Identify the notion and
need for static vs
dynamic usage.

For multiple
programming
languages, identify
program properties
checked statically and
program properties
checked dynamically.

Compare outcomes
from different
programs that define
variables in the stack
and heap; Discuss the
impact to have these
separations in

memory.

3. Write an example program
that does not type-check in a
particular language and yet
would have no error if run.

Modify a program that
process different data
types and perform
operations within the
same data.

Write an example
program that does not
type-check in a
particular language
and yet would have no
error if run.

Test a program that
given different data
type arguments as
input, perform
arithmetic operations
without causing an
error.

4. Use types and type-error
messages to write and debug
programs.

Describe sandbox
testing to handle
potential type-errors
when a data type
exception occurs.

Use types and type-
error messages to
write and debug
programs.

Test different cases
when different type-
error messages may
occur by providing
multiple inputs to a
pre-defined methods
in a program.

5. Describe how object-oriented
languages which are strong-type
languages define a data type in
compile time.

Identify different data
types capacities and
compatibility between
data types.

Describe how object-
oriented languages
which are strong-type
languages define a
data type in compile
time.

Apply type casting in
different data types to
recognize
compatibility and
possible lost of
precision in other
cases.

6. Explain why you might
choose to develop a program
in a type-safe language in
contrast to an unsafe
programming language.

Recall notable
catastrophic events
that were produced by
a type-safe error
processing.

Explain why you might
choose to develop a
program in a type-safe
language in contrast
to an unsafe
programming
language.

Implement a program
that keeps computing
data with possible lost
of precision;
demonstrate the need
of type-safe
languages in real
situations.

Learning Outcome Assessment Rubric

SDF. Software
Development
Fundamentals KA

Emerging Developed
Highly
Developed

SDF/Algorithms and Design Knowledge Unit

1. Discuss the importance of
algorithms in the problem-solving
process.

List advantages of
using algorithms in the
problem-solving
process.

Discuss the
importance of
algorithms in the
problem-solving
process.

Illustrate the
importance of
algorithms in the
problem-solving
process.

2. Discuss how a problem may
be solved by multiple algorithms,
each with different properties.

Identify a single
algorithm to solve a
problem.

Discuss how a
problem may be
solved by multiple
algorithms, each with
different properties.

Use multiple
algorithms to help
solve a problem.

3. Use a programming language
to implement algorithms
designed to solve simple
problems.

Use a programming
language to explain
how to solve simple
problems using an
algorithm.

Use a programming
language to
implement algorithms
designed to solve
simple problems.

Use a programming
language to test
algorithms for solving
simple problems.

4. Implement, test, and debug
simple recursive functions and
procedures.

Identify different types
of recursive functions
and procedures.

Implement, test, and
debug simple
recursive functions
and procedures.

Write a program that
uses different simple
recursive functions
and procedures to
solve a problem.

5. Apply the techniques of
decomposition to break a
program into smaller pieces.

Define decomposition
with regard to its use
in computer science.

Use the techniques of
decomposition to
break a program up
into smaller pieces.

Evaluate code to see
how decomposition
techniques were used.

6. Describe the data
components and behaviors of
multiple abstract data types.

List the data
components and
behaviors of multiple
abstract data types.

Describe the data
components and
behaviors of multiple
abstract data types.

Choose the proper
abstract data type to
be used in a program

7. Write simple programs which
use abstract data types (ADTs).

 Describe simple
programs which use
abstract data types
(ADTs).

 Write simple
programs which use
abstract data types
(ADTs)..

 Analyze simple
programs which use
abstract data types
(ADTs).

8. Identify the relative strengths
and weaknesses among multiple
designs or implementations for a
problem.

Given several
samples of algorithms,
state the strengths
and weaknesses
amongst them.

Illustrate different
ways to write an
algorithm for a specific
task.

Develop a solid
algorithm to solve a
business problem.

9. Demonstrate brute-force
algorithms vs divide and
conquer algorithms to
accomplish security
objectives: e.g., attempt to
breaking a password.

Explain the
differences between
brute-force algorithms
versus divide and
conquer algorithms
and how they can help
accomplish security
objectives.

Demonstrate brute-
force algorithms vs
divide and conquer
algorithms to
accomplish security
objectives: e.g.,
attempt to breaking a
password.

Implement a multiple
nested loop to create
possible combinations
of strings to match for
a given password.

10. Explain the difference and
complexity between iterative-
based and recursive-based
implementations.

Identify both iterative-
based and recursive-
based functions.

Explain the difference
and complexity
between iterative-
based and recursive-
based
implementations when
used to compute the

Evaluate the best use
of iterative-based and
recursive-based
functions for a given
problem.

same task.

11. Choose whether a recursive
or iterative solution is most
appropriate for a problem.

List several attributes
that recursive and
iterative-based
algorithm have as
approaches to solve a
problem

Choose whether a
recursive or iterative
solution is most
appropriate for a
problem.

Evaluate the
performance for two
different
implementations of the
same problem

SDF/Fundamental Programming Concepts Knowledge Unit

1. Describe the characteristics
of secure programming.

List the characteristics
of secure
programming.

Differentiate between
writing code using the
characteristics of
secure coding versus
just coding.

Write a program using
secure programming
methods to solve a
business problem.

2. Discuss the importance of
usability in security
mechanism design.

Define what is security
mechanism design.

Discuss the
importance of usability
in security mechanism
design.

Analyze programs to
see of there are any
security mechanism
design failures, and
correct them.

3. Summarize the principle of
fail-safe and deny-by-default.

Define the principles
of fail-safe and deny-
by-default.

Summarize the
principle of fail-safe
and deny-by-default.

Use the principles of
fail-safe and deny-by-
default in an algorithm
to solve a problem.

4. Produce software
components that satisfy their
functional requirements
without introducing
vulnerabilities.

Explain what potential
vulnerabilities may
exist when creating
software.

Produce software
components that
satisfy their functional
requirements without
introducing
vulnerabilities.

Evaluate code to see
if there are any
vulnerabilities
introduced in the way
the code is written and
executed.

5. Write code which uses
defensive programming
methods, such as input
validation, type checking and
buffer overflow.

Describe code which
uses defensive
programming
methods, such as
input validation, type
checking and buffer
overflow.

Write code which uses
defensive
programming
methods, such as
input validation, type
checking and buffer
overflow.

Examine code which
uses defensive
programming
methods, such as
input validation, type
checking and buffer
overflow.

6. Examine security
objectives by identifying bad
input from the user according
to the program design.

List issues with
security by identifying
bad input from the
user.

Examine security
objectives by
identifying bad input
from the user
according to the
program design.

Assess security
objectives by
identifying bad input
from the user
according to the
program design.

SDF/Fundamental Data Structures Knowledge Unit

1. Describe common
applications for each of the

List common
applications for each

Describe common
applications for each

Investigate common
applications for each

following data structures: stack,
queue, priority queue, set, and
map.

of the following data
structures: stack,
queue, priority queue,
set, and map.

of the following data
structures: stack,
queue, priority queue,
set, and map.

of the following data
structures: stack,
queue, priority queue,
set, and map.

2. Write programs that use each
of the following data structures:
arrays, records/structs, strings,
linked lists, stacks, queues, sets,
and maps.

Define the following
data structures:
arrays,
records/structs,
strings, linked
lists,stacks, queues,
sets, and maps.

Write programs that
use each of the
following data
structures: arrays,
records/structs,
strings, linked lists,
stacks, queues, sets,
and maps.

Analyze programs that
use each of the
following data
structures: arrays,
records/structs,
strings, linked lists,
stacks, queues, sets,
and maps.

3. Compare alternative
implementations of data
structures with respect to
performance.

Describe alternative
implementations of
data structures with
respect to
performance.

Compare alternative
implementations of
data structures with
respect to
performance.

Evaluate alternative
implementations of
data structures with
respect to
performance.

4. Describe how references
allow for objects to be accessed
in multiple ways.

Define a class that
contains several fields
and methods that can
be used to calculate
certain information.

Describe how
references allow for
objects to be
accessed in multiple
ways.

Implement a tester
that initializes several
instances of a given
object, store them into
an array of the same
type and print the
array contents.

5. Choose the appropriate data
structure to solve a problem.

Define built-in data
structures.

Choose the
appropriate data
structure to solve a
problem.

Write a program that
uses at least three
different data
structures.

SDF/Development Methods Knowledge Unit

1. Describe common coding
errors that introduce security
vulnerabilities.

List common coding
errors that introduce
security vulnerabilities.

Describe common
coding errors that
introduce security
vulnerabilities. (e.g.,
buffer overflows,
memory leaks,
malicious code).

Describe common
coding errors that
introduce security
vulnerabilities and the
associated techniques
for securing the code.

2. Perform a code review on a
program component.

Describe a code
review on a program
component.

Perform a code review
on a program
component (e.g.
secure, correct,
complete).

Outline a code review
on a program
component.

3. Describe opportunities within
given program components for
simple refactoring.

List opportunities
within given program
components for simple
refactoring.

Describe opportunities
within given program
components for simple
refactoring.

Implement simple
refactoring within
given program
components.

4. Describe contract
programming and the role of
preconditions, postconditions,
and invariants.

List the importance
concepts associated
with contract
programming.

Describe contract
programming and the
role of preconditions,
postconditions, and
invariants.

Illustrate contract
programming and the
role of preconditions,
postconditions, and
invariants for a
programming
component.

5. Apply a variety of strategies
to test and debug simple
programs.

List strategies to test
and debug simple
programs.

Apply a variety of
strategies to test and
debug simple
programs (e.g., unit
testing, test-case
generation).

Analyze the
effectiveness of a
variety of strategies to
test and debug simple
programs.

 6. Use an IDE to create,
execute, and debug programs.

Discuss the benefits of
using an IDE to
create, execute, and
debug programs.

Use an IDE to create,
execute, and debug
programs.

Compare IDEs which
can be used to create,
execute, and debug
programs for a given
programming
language.

7. Use standard libraries for a
given programming language to
create, execute, and debug
programs.

List the standard
libraries for a given
programming.

Use standard libraries
for a given
programming
language to create,
execute, and debug
programs.

Examine the standard
libraries for a given
programming
language.

8. Apply consistent
documentation and program
style standards.

Discuss the pros and
cons of inconsistent
documentation and
program style
standards.

 Apply consistent
documentation and
program style
standards.

Evaluate
documentation and
program style in a
given coding solution.

Learning Outcome Assessment Rubric

SE. Software Engineering
KA

Emerging Developed
Highly
Developed

SE/Software Processes Knowledge Unit

1. Describe how software can
interact with and participate in
various systems including
information management,
embedded, process control, and
communications systems.

Recognize how
software can interact
with and participate in
various systems
including information
management,
embedded, process

Describe how
software can interact
with and participate in
various systems
including information
management,
embedded, process

Implement software
that can interact with
and participate in
various systems
including information
management,
embedded, process

control, and
communications
systems.

control, and
communications
systems.

control, and
communications
systems.

2. Describe the relative
advantages and disadvantages
among several major process
models (e.g., waterfall, iterative,
and agile).

Identify the relative
advantages and
disadvantages among
several major process
models (e.g., waterfall,
iterative, and agile).

Describe the relative
advantages and
disadvantages among
several major process
models (e.g., waterfall,
iterative, and agile).

Contrast the relative
advantages and
disadvantages among
several major process
models (e.g., waterfall,
iterative, and agile).

3. Describe the different
practices that are key
components of various process
models.

List the different
practices that are key
components of various
process models.

Describe the different
practices that are key
components of various
process models.

Apply the different
practices that are key
components of various
process models.

4. Differentiate among the
phases of software
development.

List the phases of
software development.

Differentiate among
the phases of software
development.

Perform the phases of
software development.

5. Describe how programming in
the large differs from individual
efforts with respect to
understanding a large code
base, code reading,
understanding builds, and
understanding context of
changes.

List how programming
in the large differs
from individual efforts
with respect to
understanding a large
code base, code
reading,
understanding builds,
and understanding
context of changes.

Describe how
programming in the
large differs from
individual efforts with
respect to
understanding a large
code base, code
reading,
understanding builds,
and understanding
context of changes.

Illustrate how
programming in the
large differs from
individual efforts with
respect to
understanding a large
code base, code
reading,
understanding builds,
and understanding
context of changes.

6. Describe the relative
advantages and disadvantages
among several major process
models.

Identify the relative
advantages and
disadvantages among
several major process
models.

Describe the relative
advantages and
disadvantages among
several major process
models (e.g., multi-
level security, waterfall
with security,
comprehensive
lightweight application
security process
(CLASP), Extreme
Programming, Aspect-
oriented
programming).

Use one of the several
major process models.

SE/Software Project Management Knowledge Unit

1. Discuss common behaviors
that contribute to the effective
functioning of a team.

List common
behaviors that
contribute to the
effective functioning of
a team.

Discuss common
behaviors that
contribute to the
effective functioning of
a team.

Examine common
behaviors that
contribute to the
effective functioning of
a team.

2. Describe necessary roles in a
software development team.

Identify necessary
roles of a software
development team.

Describe necessary
roles in a software
development team.

Compare necessary
roles in a software
development team.

3. Describe the sources,
hazards, and potential benefits
of team conflict.

List the sources,
hazards, and potential
benefits of team
conflict.

Describe the sources,
hazards, and potential
benefits of team
conflict.

Illustrate the sources,
hazards, and potential
benefits of team
conflict.

4. Apply a conflict resolution
strategy in a team setting.

Describe conflict
resolution strategies
for a team.

Apply a conflict
resolution strategy in a
team setting.

Contrast conflict
resolution strategies
for teams.

5. Use an ad hoc method to
estimate software development
effort (e.g., time) and compare to
actual effort required

Describe an ad hoc
method to estimate
software development
effort (e.g., time) and
compare to actual
effort required

Use an ad hoc method
to estimate software
development effort
(e.g., time) and
compare to actual
effort required

Evaluate an ad hoc
method to estimate
software development
effort (e.g., time) and
compare to actual
effort required

6. Describe different
categories of risk in software
systems.

List different
categories of risk in
software systems.

Describe different
categories of risk in
software systems.

Contrast different
categories of risk in
software systems.

7. Discuss the need to update
software to fix security
vulnerabilities and the life
cycle management of the fix.

State the need to
update software to fix
security vulnerabilities
and the life cycle
management of the
fix.

Discuss the need to
update software to fix
security vulnerabilities
and the life cycle
management of the
fix.

Implement updates to
software to fix security
vulnerabilities

SE/Tools and Environments Knowledge Unit

1. Describe the difference
between centralized and
distributed software configuration
management.

Define centralized and
distributed software
configuration
management.

Describe the
difference between
centralized and
distributed software
configuration
management.

Contrast the
difference between
centralized and
distributed software
configuration
management.

2. Describe how version control
can be used to help with
software release management

Identify version control
technologies that can
be used for software
release management

Describe how version
control can be used to
help with software
release management

Use version control for
software release
management

3. Explain configuration items
and how to use a source code
control tool in a small team-
based project.

Identify configuration
items and a source
code control tool in a
small team-based
project.

Explain configuration
items and how to use
a source code control
tool in a small team-
based project.

Modify configuration
items and use a
source code control
tool in a small team-
based project.

4. Describe how available static
and dynamic test tools can be
integrated into the software
development environment.

List available static
and dynamic test tools
that can be integrated
into the software

Describe how
available static and
dynamic test tools can
be integrated into the

Use static and
dynamic test tools in a
software development
environment.

development
environment.

software development
environment.

5. Describe the issues that are
important in selecting a set of
tools for the development of a
particular software system,
including tools for requirements
tracking, design modeling,
implementation, build
automation, and testing.

List the factors that
are important in
selecting a set of tools
for the development of
a particular software
system, including tools
for requirements
tracking, design
modeling,
implementation, build
automation, and
testing.

Describe the issues
that are important in
selecting a set of tools
for the development of
a particular software
system, including tools
for requirements
tracking, design
modeling,
implementation, build
automation, and
testing.

Investigate the issues
that are important in
selecting a set of tools
for the development of
a particular software
system, including tools
for requirements
tracking, design
modeling,
implementation, build
automation, and
testing.

6. Demonstrate the capability to
use software tools in support of
the development of a software
product of medium size.

Identify software tools
to support the
development of a
software product of
medium size.

Demonstrate the
capability to use
software tools in
support of the
development of a
software product of
medium size.

Use software tools in
support of the
development of a
software product of
medium size.

7. Use a modern IDE and
debugger for security-minded
debugging and testing.

Explain how a modern
IDE and debugger can
be used for security-
minded debugging
and testing.

Use a modern IDE
and debugger for
security-minded
debugging and
testing.

Assess a modern IDE
and debugger for
security-minded
debugging and
testing.

8. Explain the risks with
misusing interfaces with third-
party code and how to
correctly use third-party code.

List the risks with
misusing interfaces
with third-party code
and how to correctly
use third-party code.

Explain the risks with
misusing interfaces
with third-party code
and how to correctly
use third-party code.

Illustrate the risks with
misusing interfaces
with third-party code
and how to correctly
use third-party code.

9. Use static and dynamic tools
to identify programming faults.

Identify static and
dynamic tools to
identify programming
faults.

Use static and
dynamic tools to
identify programming
faults.

Evaluate static and
dynamic tools to
identify programming
faults.

SE/Requirements Engineering Knowledge Unit

1. Describe the key components
of a use case or similar
description of some behavior
that is required for a system.

List the key
components of a use
case or similar
description of some
behavior that is
required for a system.

Describe the key
components of a use
case or similar
description of some
behavior that is
required for a system.

Decompose use case
into its key
components.

2. Describe how the
requirements engineering
process supports the elicitation
and validation of behavioral

Define the
requirements
engineering in the
context of behavioral

Describe how the
requirements
engineering process
supports the elicitation

Develop software
requirements based
on the elicitation and
validation of

requirements. requirements. and validation of
behavioral
requirements.

behavioral
requirements.

3. Interpret a given requirements
model for a simple software
system.

Recognize a given
requirements model
for a simple software
system.

Interpret a given
requirements model
for a simple software
system.

Produce a
requirements model
for a simple software
system.

4. Write system requirements
from a client
concept/specification that
incorporate threat models.

Discuss system
requirements from a
client
concept/specification
that incorporate threat
models.

Write system
requirements from a
client
concept/specification
that incorporate threat
models.

Analze system
requirements from a
client
concept/specification
that incorporate threat
models.

5. Write user narratives in
preparation for building a piece
of software.

Classify user
narratives in
preparation for
building a piece of
software.

Write user narratives
in preparation for
building a piece of
software.

Analyze use-cases
from user narratives in
preparation for
building a piece of
software.

6. Describe important ethical
issues to consider in
computer security, including
ethical issues associated with
fixing or not fixing.

List important ethical
issues to consider in
computer security,
including ethical
issues associated with
fixing or not fixing.

Describe important
ethical issues to
consider in computer
security, including
ethical issues
associated with fixing
or not fixing.

Categorize important
ethical issues to
consider in computer
security, including
ethical issues
associated with fixing
or not fixing.

7. Describe the concepts of
risk, threats, vulnerabilities
and attack vectors (including
the fact that there is no such
thing as perfect security).

Identify the concepts
of risk, threats,
vulnerabilities and
attack vectors
(including the fact that
there is no such thing
as perfect security).

Describe the concepts
of risk, threats,
vulnerabilities and
attack vectors
(including the fact that
there is no such thing
as perfect security).

Assess the concepts
of risk, threats,
vulnerabilities and
attack vectors of
software requirements
(including the fact that
there is no such thing
as perfect security).

8. Explain the concept of trust
and trustworthiness.

Define the concept of
trust and
trustworthiness.

Demonstrate the
concept of trust and
trustworthiness.

Assess the concept of
trust and
trustworthiness in
software
requirements.

9. Explain the concepts of
authentication, authorization,
access control.

Define the concepts of
authentication,
authorization, access
control.

Explain the concepts
of authentication,
authorization, access
control.

Use the concepts of
authentication,
authorization, access
control in software
requirements.

SE/Software Design Knowledge Unit

1. Describe different system
design principles: levels of
abstraction (architectural design
and detailed design), separation
of concerns, information hiding,
coupling and cohesion, re-use of
standard structures.

Recognize different
system design
principles.

Describe different
system design
principles: levels of
abstraction
(architectural design
and detailed design),
separation of
concerns, information
hiding, coupling and
cohesion, re-use of
standard structures.

Illustrate different
system design
principles: levels of
abstraction
(architectural design
and detailed design),
separation of
concerns, information
hiding, coupling and
cohesion, re-use of
standard structures.

2. Analyze an existing
software implementation and
make suggestions to improve
security in its design.

Identify possible
stages of software
design that may
introduce potential
information leakage or
a security
vulnerability.

Analyze an existing
software
implementation and
make suggestions to
improve security in its
design.

Debate whether a
proposed
solution/patch to the
design can fix the
vulnerability in a viable
and effective way.

3. Implement security
improvements in an existing
software implementation.

Locate the code from
existing software that
generates the security
vulnerability .

Implement security
improvements in an
existing software
implementation.

Justify an
improvement of the
security vulnerability in
an existing software
implementation.

4. Describe standard
components for security
operations, and explain the
benefits of their use instead of
re- inventing fundamentals
operations.

Identify standard
components for
security operations.

Describe standard
components for
security operations,
and explain the
benefits of their use
instead of re-
inventing
fundamentals
operations.

Categorize standard
components for
security operations
based on benefits of
their use.

5. Describe the concept of
mediation and the principle of
complete mediation.

Identify cases where
the concept of
mediation and the
principle of complete
mediation can be used
in the software design
process.

Describe the concept
of mediation and the
principle of complete
mediation.

Evaluate the usability
design two models
based on the concept
of mediation and the
principle of complete
mediation.

6. Describe the cost and
tradeoffs associated with
designing security into a
product.

Recognize situations
where security
designs are effectively
applied in a product.

Describe the cost and
tradeoffs associated
with designing security
into a product.

Compare security
designs and their
current costs and
tradeoffs.

7. Describe the requirements
for integrating security into
the software development

Identify potential
stages of the software
development lifecycle

Describe the
requirements for
integrating security

Analyze the impact in
a software life cycle of
integrating a security

lifecycle. where security is
needed.

into the software
development lifecycle.

component.

8. Explain the concept of
trusted computing including
trusted computing base and
attack surface and the
principle of minimizing
trusted.

Define concepts of
trusted computing,
attack surface, and
minimizing trusted
computing .

Explain the concept of
trusted computing
including trusted
computing base and
attack surface and the
principle of minimizing
trusted .

Illustrate cases where
these concepts can be
applied in the design
process .

SE/Software Construction Knowledge Area

1. Describe techniques, coding
idioms and mechanisms for
implementing designs to achieve
desired properties such as
reliability, efficiency, and
robustness.

Identify techniques,
coding idioms and
mechanisms for
implementing designs
to achieve desired
properties such as
reliability, efficiency,
and robustness.

Describe techniques,
coding idioms and
mechanisms for
implementing designs
to achieve desired
properties such as
reliability, efficiency,
and robustness.

Implement techniques,
coding idioms and
mechanisms for
implementing designs
to achieve desired
properties such as
reliability, efficiency,
and robustness.

2. Classify a robust code using
exception handling mechanisms.

Recognize potential
input that may cause
an exception in the
code and handle the
output effectively
using a exception
handling mechanism.

Classify a robust code
using exception
handling mechanisms.

Implement a program
that handles a
potential exception
that may be caused by
an invalid input.

3. Describe secure coding and
defensive coding practices.

List several strategies
for defensive coding.

Describe secure
coding and defensive
coding practices.

Implement a defensive
coding practice.

4. Analyze a retired system for
actionable attack information.

Discuss a retired
system for potential
attack vulnerabilities.

Analyze a retired
system for actionable
attack information.

Compare different
attack information
from a retired system.

5. Describe the process of
analyzing and implementing
changes to code base
developed for a specific project.

Discuss the
importance of
software construction
based on changing
pieces of code to be
compatible with other
components of a
specific project.

Describe the process
of analyzing and
implementing changes
to code base
developed for a
specific project.

Implement specific
changes to an existing
code to operate with
other components of a
specific project.

6. Edit a simple program to
remove common
vulnerabilities, such as buffer
overflows, integer overflows
and race conditions, and test
to insure the components are
resilient to input and run-time

Identify a list of
common
vulnerabilities in a
simple program.

Edit a simple program
to remove common
vulnerabilities, such as
buffer overflows,
integer overflows and
race conditions, and
test to insure the

Evaluate a simple
program in which
vulnerabilities were
removed .

errors. components are
resilient to input and
run-time errors.

7. Diagram use cases. Describe the use case
for each sta.ge on the
lifecycle

Diagram use cases. Examine use cases
for a given task.

8. Examine the vulnerabilities
in a given development
process to an insider inserting
undetected backdoor
insertion.

Describe the potential
vulnerabilities that
may occur in a given
development process .

Examine the
vulnerabilities in a
given development
process to an insider
inserting undetected
backdoor insertion.

Verify that a current
solution is effective in
a given development
process.

9. Use a defined coding
standard in a small software
project.

Select a defined
coding standard in a
small software project.

Use a defined coding
standard in a small
software project.

Justify the reason of
using a given code.

SE/Software Verification and Validation Knowledge Area

1. Distinguish between program
validation and verification.

Explain the difference
between validation
and verification of data

Distinguish between
program validation
and verification.

Implement a piece of
code that validates
and verifies a given
input

2. Describe the role that tools
can play in the validation of
software.

Recognize well-known
tools that validate
certain software.

Describe the role that
tools can play in the
validation of software.

Use tools that help
validate the input of a
software.

3. Describe among the different
types and levels of testing (unit,
integration, systems, and
acceptance).

List the different types
and levels of testing

Describe among the
different types and
levels of testing (unit,
integration, systems,
and acceptance).

Distinguish among the
different types and
levels of testing (unit,
integration, systems,
and acceptance).

4.Describe techniques to identify
and select optimal and
significant test cases for
integration, regression and
system testing.

Define integration,
regression and system
testing.

Describe techniques
to identify and select
optimal and significant
test cases for
integration, regression
and system testing.

Compare several
techniques for
identifying significant
test cases for
integration, regression
and system testing.

5. Use a defect tracking tool to
manage software defects in a
small software project.

List tracking tools
used to manage
software defects

Use a defect tracking
tool to manage
software defects in a
small software project.

Evaluate tracking tools
that manage software
defects

6. Discuss the limitations of
testing in a particular domain.

Explain the
importance of not
restrict the testing of
a code to a specific
domain

Discuss the limitations
of testing in a
particular domain.

Categorize the
limitations of testing in
a particular domain.

7. Describe input validation
and data sanitization including
how code is tested for input
handling errors and the impact
this has on security.

Define input validation
and data sanitization.

Describe input
validation and data
sanitization including
how code is tested for
input handling errors
and the impact this
has on security.

Write code that
performs input
validation and data
sanitization.

SE/Software Evolution Knowledge Unit

1. Identify the principal issues
associated with software
evolution and explain their
impact on the software lifecycle.

Recognize the stages
of the software
lifecycle where
software evolution can
take place.

Identify the principal
issues associated with
software evolution and
explain their impact on
the software lifecycle.

Implement software
evolution in given
stages of the software
lifecycle .

2. Use refactoring in the process
of modifying a software
component.

Explain the existence
of design patterns in
software development.

Use refactoring in the
process of modifying a
software component.

Implement a
refactoring pattern to
modify a software
component.

3. Discuss the challenges of
evolving systems in a changing
environment.

Define what evolving
systems are.

Discuss the
challenges of evolving
systems in a changing
environment.

Analyze existing
systems in known
controlled
environments.

4. Outline the process of
regression testing and its role in
release management.

Identify the stage of
software lifecycle
where regression
testing takes place.

Outline the process of
regression testing and
its role in release
management.

Assess output
obtained from a
process of regression
testing.

5. Discuss the advantages and
disadvantages of different types
of software reuse.

Define software
reusability.

Discuss the
advantages and
disadvantages of
different types of
software reuse.

Integrate components
from previous pieces
of code and contrast
the outcomes from
current version.

6. Describe software
development best practices
for minimizing vulnerabilities
in programming code.

List several
vulnerabilities that
may occur in the
process of software
development.

Describe software
development best
practices for
minimizing
vulnerabilities in
programming code.

Evaluate best
practices for
minimizing
vulnerabilities in
programming code.

SE/Software Reliability Knowledge Unit

1. Explain the problems that
exist in achieving very high
levels of reliability.

Identify the trade-off of
achieving very high
levels of reliability.

Explain the problems
that exist in achieving
very high levels of
reliability.

Analyze outcomes of
a software by
obtaining a high level
of reliability.

2. Describe how software
reliability contributes to system
reliability.

Recognize trade-offs
between software
reliability and system

Describe how
software reliability
contributes to system

Justify how software
reliability contributes
to system reliability.

reliability. reliability.

3. Identify ways to apply
redundancy to achieve fault
tolerance for a medium-sized
application.

Recognize locations to
apply redundancy for
a medium-sized
application.

Identify ways to apply
redundancy to achieve
fault tolerance for a
medium-sized
application.

Analyze the fault
tolerance for an
application.

4. Analyze OOP design
patterns and explain how they
impact reliability and security.

Recognize design
patterns in the
software lifecycle
components .

Analyze OO design
patterns and explain
how they impact
reliability and security.

Compare design
patterns and their
impact to achieve
reliability and security
in the software
development.

5. List approaches to minimizing
faults that can be applied at
each stage of the software
lifecycle.

Identify faults that can
occur in different
stages of the software
lifecycle.

List approaches to
minimizing faults that
can be applied at each
stage of the software
lifecycle.

Evaluate the
approaches used to
minimizing faults at
each stage of the
software lifecycle.

Learning Outcome Assessment Rubric

SF. System
Fundamentals KA

Emerging Developed
Highly
Developed

SF/Computational Paradigms Knowledge Unit

1. List commonly encountered
patterns of how computations
are organized.

Recognize some
patterns of how
computations are
organized.

List commonly
encountered patterns
of how computations
are organized.

Explain commonly
encountered patterns
of how computations
are organized.

2. Identify the basic building
blocks of computers and their
role in the historical
development of computer
architecture.

Identify some of the
basic building blocks
of computers.

Identify the basic
building blocks of
computers and their
role in the historical
development of
computer architecture.

Discuss the basic
building blocks of
computers and their
role in the historical
development of
computer architecture.

3. Discuss the differences
between single thread and
multiple thread, single server
and multiple server models.

Identify some
differences between
single thread and
multiple thread, single
server and multiple
server models.

Discuss the
differences between
single thread and
multiple thread, single
server and multiple
server models.

Illustrate the
differences between
single thread and
multiple thread, single
server and multiple
server models.

4. Illustrate performance of
simple sequential and parallel
versions of a program with

Discuss the general
performance of simple
sequential and parallel

Illustrate performance
of simple sequential
and parallel versions

Compare performance
of sequential and
parallel versions of a

different problem sizes. versions of a program. of a program with
different problem
sizes.

program with different
problem sizes.

5. Recognize security
implications related to
emerging computational
paradigms.

List one or more
security implications
related to
computational
paradigms.

Recognize security
implications related to
emerging
computational
paradigms, such as
Quantum Computing.

Discuss security
implications related to
emerging
computational
paradigms.

SF/Cross-Layer Communications Knowledge Unit

1. Describe how computing
systems are constructed of
layers upon layers, based on
separation of concerns, with
well-defined interfaces, hiding
details of low layers from the
higher layers.

Recognize that
computing systems
are constructed of
layers upon layers,
based on separation
of concerns, with well-
defined interfaces,
hiding details of low
layers from the higher
layers.

Describe how
computing systems
are constructed of
layers upon layers,
based on separation
of concerns, with well-
defined interfaces,
hiding details of low
layers from the higher
layers.

Diagram a computing
systems constructed
of layers upon layers,
based on separation
of concerns, with well-
defined interfaces,
hiding details of low
layers from the higher
layers.

2. Implement a simple program
using methods of layering, error
detection and recovery, and
reflection of error status across
layers.

Explain a simple
program that uses
methods of layering,
error detection and
recovery, and
reflection of error
status across layers.

Implement a simple
program using
methods of layering,
error detection and
recovery, and
reflection of error
status across layers.

Implement a complex
program using
methods of layering,
error detection and
recovery, and
reflection of error
status across layers.

3. Investigate bugs in a layered
program using tools for program
tracing, single stepping, and
debugging.

Demonstrate bugs in a
layered program using
tools for program
tracing, single
stepping, and
debugging.

Investigate bugs in a
layered program using
tools for program
tracing, single
stepping, and
debugging.

Categorize bugs by
security risk in a
layered program using
tools for program
tracing, single
stepping, and
debugging.

Learning Outcome Assessment Rubric

SP. Social Issues and
Professional Practice KA

Emerging Developed
Highly
Developed

SP/Social Context Knowledge Unit

1. Describe positive and negative
ways in which computer
technology (networks, mobile
computing, cloud computing)
alters modes of social interaction
at the personal level.

Identify ways in which
computer technology
(networks, mobile
computing, cloud
computing) affects
social interaction at
the personal level.

Describe positive and
negative ways in
which computer
technology (networks,
mobile computing,
cloud computing)
alters modes of social
interaction at the
personal level.

Critique positive and
negative ways in
which computer
technology (networks,
mobile computing,
cloud computing)
changes methods of
social interaction at
the personal level.

2. Interpret developers’
assumptions and values
embedded in hardware and
software design, especially as
they pertain to usability for diverse
populations including under-
represented populations and the
disabled.

Identify developers’
assumptions and
values embedded in
hardware and
software design,
especially as they
pertain to
underrepresented
populations and the
disabled.

Interpret developers’
assumptions and
values embedded in
hardware and
software design,
especially as they
pertain to usability for
diverse populations
including under-
represented
populations and the
disabled.

Contrast developers’
assumptions and
values embedded in
hardware and
software design,
especially as they
pertain to usability for
diverse populations
including under-
represented
populations and the
disabled.

3. Interpret the social context of a
given design and its
implementation.

Label the social
context of a given
design and its
implementation.

Interpret the social
context of a given
design and its
implementation.

Analyze the social
context of a given
design and its
implementation.

4. Describe the impact of the
underrepresentation of diverse
populations in the computing
profession (e.g., industry culture,
product diversity).

Identify how the
underrepresentation
of diverse populations
impacts the
computing profession
(e.g., industry culture,
product diversity).

Describe the impact
of the
underrepresentation
of diverse populations
in the computing
profession (e.g.,
industry culture,
product diversity).

Assess the impact of
the
underrepresentation
of diverse populations
in the computing
profession (e.g.,
industry culture,
product diversity).

SP/Analytical Tools Knowledge Unit

1. Analyze stakeholder positions
in a given situation.

Define stakeholder
positions in a given
situation.

Analyze stakeholder
positions in a given
situation.

Formulate stakeholder
positions in a given
situation.

2. Discuss ethical/social tradeoffs
in technical decisions.

Identify ethical/social
tradeoffs in technical

Discuss ethical/social
tradeoffs in technical

Evaluate ethical/social
tradeoffs in technical

decisions. decisions. decisions.

3. Describe user responsibilities
related to the handling of
information in both personal and
enterprise computing.

Define types of
information handled in
both personal and
enterprise computing.

Describe
responsibilities related
to the handling of
information in both
personal and
enterprise computing.

Analyze the effects of
improper handling of
information in both
personal and
enterprise computing.

4. Describe potential cyber
attacks and the actors that
might perform them.

Identify potential cyber
attacks and the actors
that might perform
them.

Describe potential
cyber attacks and the
actors that might
perform them.

Analyze the impact of
potential cyber attacks
and the likelihood of
the attacks happening.

SP/Professional Ethics Knowledge Unit

1. Discuss various types of ethical
issues and dilemmas in both
personal and enterprise
computing.

Identify various types
of ethical issues and
dilemmas in both
personal and
enterprise computing.

Discuss various types
of ethical issues and
dilemmas in both
personal and
enterprise computing.

Debate various types
of ethical issues and
dilemmas in both
personal and
enterprise computing.

2. Explain recent and historical
legislation related to digital
privacy, unlawful access, and
digital piracy, cyber defense,
and computing ethics.

Identify recent and
historical legislation
related to digital
privacy, unlawful
access, digital piracy,
cyber defense, and
computing ethics.

Explain recent and
historical legislation
related to digital
privacy, unlawful
access, and digital
piracy, cyber defense,
and computing ethics.

Assess the
consequences of
violating any of the
legislation related to
digital privacy, unlawful
access, digital piracy,
cyber defense, or
computing ethics.

3. Analyze the impact of
Acceptable Use Policies and Online
Codes of Conduct on employee
behavior and choices in the digital
space.

Identify the most
commonly listed items
in an Acceptable Use
Policy and an Online
Code of Conduct as
they relate to the use of
digital resources.

Analyze the impact of
Acceptable Use
Policies and Online
Codes of Conduct on
employee behavior and
choices in the digital
space.

Appraise the
Acceptable Use Policy
and Online Code of
Conduct statements at
your school for their
relevance to the
current period and
technology.

4. Summarize case studies
related to ethics.

Identify components
associated with ethics
in two case studies
related to ethics in
computing.

Summarize the long-
and short-term impacts
of the actions listed in
the two case studies.

Debate, in both face-to-
face and online format,
the main actions listed
in the case studies and
the subsequent impact
of these actions.

SP/Intellectual Property Knowledge Unit

1. Explain the terms intellectual
property, fair-use, copyright, and
plagiarism.

Define the terms
intellectual property,
fair-use, copyright, and
plagiarism. Give
examples of each.

Explain, with examples,
the terms intellectual
property, fair-use,
copyright, and
plagiarism. Discuss the

Debate ethics
violations as related to
copyright or the fair-
use doctrine.

State the plagiarism
policy at your school.

importance of knowing
these terms in the
current age of the
world wide web.

2. Discuss the key pieces of
legislation related to fair-use,
plagiarism, and intellectual property
copyrights.

Identify the key pieces
of legislation related to
fair-use, plagiarism,
and intellectual
property copyrights.

Discuss the key pieces
of legislation related to
fair-use, plagiarism,
and intellectual
property copyrights.

Debate the
effectiveness of
legislation related to
the fair-use doctrine,
plagiarism, intellectual
property copyright
protections in the
global marketplace and
economy.

3. Summarize laws, both national
and international, related to code
patents and intellectual property
copyrights.

List the process of
obtaining a software/
hardware patent and
the laws that protect
the patent.

Summarize, at length,
the process of
obtaining a software/
hardware patent and
the laws that protect
the patent.

Discuss, at length, the
process of obtaining a
software/hardware
patent and the laws
that protect the patent
by referencing key
cases such as Apple v
Samsung.

SP/Privacy and Civil Liberties Knowledge Unit

1. Apply solutions to privacy
threats in transactional
databases and data
warehouses.

Identify solutions to
privacy threats in
transactional
databases and data
warehouses.

Apply solutions to
privacy threats in
transactional
databases and data
warehouses.

Evaluate solutions to
privacy threats in
transactional
databases and data
warehouses.

2. Discuss the role of data
collection in the implementation of
pervasive surveillance systems
(e.g., RFID, face recognition,
mobile computing).

Identify the types of
data collected in the
implementation of
pervasive surveillance
systems (e.g., RFID,
face recognition,
mobile computing).

Discuss the role of data
collection in the
implementation of
pervasive surveillance
systems (e.g., RFID,
face recognition,
mobile computing).

Assess the role of data
collection in the
implementation of
pervasive surveillance
systems (e.g., RFID,
face recognition,
mobile computing).

3. Investigate the impact of
technological solutions to privacy
problems.

Discuss the impact of
technological solutions
to privacy problems.

Investigate the impact
of technological
solutions to privacy
problems.

Debate the impact of
technological solutions
to privacy problems.

SP/Professional Communication Knowledge Unit

1. Demonstrate competency in
oral, written, and visual
communication in the computing
profession.

Identify a readable,
concise, and effective
paper on a given
technical topic using
proper citation
methods.

Demonstrate
communication skills
by writing a thorough
review/research paper
using proper citations
with graphics
incorporated into the

Debate/Discuss the
technical topic at hand.
Arguments should be
thorough, clearly
articulated, and
specifically tuned to a
particular audiences.

paper. Accurate use of
language and grammar
is important.

2. Distinguish between verbal and
nonverbal communication.

List the various ways in
which nonverbal cues
can impact the
message being
delivered.

Distinguish the
importance of both
verbal and nonverbal
techniques in an oral
presentation. Cite
proper sources for this
paper.

Evaluate the various
ways in which
nonverbal cues can
impact the message
being delivered.

3. Demonstrate a broad grasp of
communication theories as they
apply to communication in the
world of technology.

Identify the
communication
theories as they apply
to technical writing and
technical
communication.

Demonstrate
established
communication
theories as they apply
to technical writing and
technical
communication.

Choose any one
communication theory
and write a paper to
explain it in depth.
Include in your
explanation a
discussion of how the
theory applies to
written, oral, and
nonverbal
communication in the
world of technology.

SP/Sustainability Knowledge Unit

1. Describe the economic, social,
and environmental impacts of
computing.

List the various ways in
which computing or
use of e-resource
impacts the economy,
the society, and the
environment around
us.

Describe the various
ways in which
computing or use of e-
resource impacts the
economy, the society,
and the environment
around us.

Debate processes
related to the various
ways in which
computing or use of e-
resource impacts the
economy, the society,
and the environment
around us. An example
of a debatable topic
could be Reverse
Supply Chains.

2. Discuss strategies used to
assess and lessen the carbon
footprint of materials and
equipment used in computing.

Find at least three
news item/scholarly
articles related to the
environmental footprint
of the manufacture and
use of computers.

Discuss at least three
news item/scholarly
articles related to the
environmental footprint
of the manufacture and
use of computers.

Debate at least three
news item/scholarly
articles related to the
environmental footprint
of the manufacture and
use of computers.

3. Summarize case studies
related to sustainable computing
efforts.

Identify sustainable
computing efforts in a
case study.

Summarize a case
study related to
sustainable computing
and respond to
summary questions at
the end of the case
study.

Develop solutions for
the problems listed in a
case study related to
sustainable computing
and respond to
summary questions at
the end of the case
study.

SP/Security Policies, Laws and Computer Crime Knowledge Unit

1. List examples of computer
crimes and social engineering
incidents with societal impact.

List examples of
computer crimes and
social engineering
incidents with societal
impact.

Summarize examples
of computer crimes and
social engineering
incidents with societal
impact.

Investigate recent
examples of computer
crimes and social
engineering incidents
with societal impact.

2. Interpret laws that apply to
computer crimes.

Identify laws that apply
to computer crimes.

Interpret laws that
apply to computer
crimes.

Deconstruct laws that
apply to computer
crimes.

3. Describe the motivation and
ramifications of cyber terrorism
and criminal hacking.

Recognize the
motivation and
ramifications of cyber
terrorism and criminal
hacking.

Describe the motivation
and ramifications of
cyber terrorism and
criminal hacking.

Evaluate the motivation
and ramifications of
cyber terrorism and
criminal hacking.

4. Examine the ethical and legal
issues surrounding the misuse
of access and various breaches
in security.

Discuss the ethical and
legal issues
surrounding the misuse
of access and various
breaches in security.

Examine the ethical
and legal issues
surrounding the misuse
of access and various
breaches in security.

Analyze the ethical and
legal issues
surrounding the misuse
of access and various
breaches in security.

5. Write a company-wide policy,
which includes procedures for
managing passwords, avoiding
social engineering attacks, and
employee monitoring.

Find policies that
include procedures for
managing passwords,
avoiding social
engineering attacks,
and employee
monitoring.

Write a company-wide
policy, which includes
procedures for
managing passwords,
avoiding social
engineering attacks,
and employee
monitoring.

Compare several
company-wide policies,
which includes
procedures for
managing passwords,
avoiding social
engineering attacks,
and employee
monitoring.

Bloom’s Revised Taxonomy

The foundational Taxonomy of Educational Objectives: A Classification of Educational Goals

was established in 1956 by Dr. Benjamin Bloom, an educational psychologist, and is often

referred to as Bloom's Taxonomy. This classification divides educational objectives into three

learning domains: Cognitive (knowledge), Affective (attitude) and Psychomotor (skills). In 2000,

Lorin Anderson and David Krathwohl updated Bloom’s seminal framework to create Bloom’s

Revised Taxonomy, focusing on the Cognitive and Affective Domains. As described below,

the ACM Committee for Computing Education in Community Colleges (CCECC) has adopted

Bloom’s Revised Taxonomy for the assessment of student learning outcomes in its

computing curricula.

Cognitive Domain Action Verbs

Remembering Understanding Applying Analyzing Evaluating Creating

Define Classify Apply Analyze Appraise Assemble

Duplicate Convert Calculate Attribute Argue Construct

Find Demonstrate Carry out Categorize Assess Create

Identify Describe Edit Compare Choose Design

Label Differentiate Diagram Contrast Critique Develop

List Discuss Execute Decompose Debate Devise

Locate Exemplify Illustrate Deconstruct Defend Formulate

Memorize Explain Implement Deduce Estimate Hypothesize

Name Infer Investigate Discriminate Evaluate Invent

Recall Interpret Manipulate Distinguish Judge Make

Recognize Paraphrase Modify Examine Justify Plan

Retrieve Report Operate Integrate Support

Select Summarize Perform Organize Test

State Translate Produce Outline Value

 Solve Structure Verify

 Use

 Write

Glossary of Terms

The ACM CCCECC defines the following terms in relationship to curricula associated with

computing education in associate-degree granting institutions.

Associate Degrees are well-defined and meaningful completion points at the conclusion of

two-year degree programs; such degrees are awarded by two-year, community or technical

colleges, as well as some four-year colleges.

Career Programs are specifically designed to enable students to pursue entry into the

workforce after two years of college studies; these are typically Associate of Applied Science

(AAS) degree programs.

Computing is now recognized by the ACM as comprised of six defined sub-disciplines:

computer science, computer engineering, software engineering, information systems,

information technology, and cybersecurity.

Computer Engineering … involves the design and construction of processor-based systems

comprised of hardware, software, and communications components. This four-year curriculum

focuses on the synthesis of electrical engineering and computer science as applied to the

design of systems such as cellular communications, consumer electronics, medical imaging

and devices, alarm systems and military technologies. Upon graduation, students initiating

careers as computer engineers should be able to design and implement systems that involve

the integration of software and hardware devices.

Computer Science … involves design and innovation developed from computing principles.

This four-year curriculum focuses on the theoretical foundations of computing, algorithms, and

programming techniques, as applied to operating systems, artificial intelligence, informatics

and the like. Upon graduation, students initiating careers as computer scientists should be

prepared to work in a broad range of positions involving tasks from theoretical work to software

development.

Cybersecurity … The ACM JTF defines cybersecurity as a “computing-based discipline

involving technology, people, information, and processes to enable assured operations. It

involves the creation, operation, analysis, and testing of secure computer systems. It is an

interdisciplinary course of study, including aspects of law, policy, human factors, ethics, and

risk management often in the context of adversaries.” (December 7, 2015, www.csec2017.org/)

Information Systems … involves the application of computing principles to business

processes, bridging the technical and management fields. This four-year curriculum focuses on

the design, implementation and testing of information systems as applied to business

processes such as payroll, human resources, corporate databases, data warehousing and

mining, e-commerce, finance, customer relations management, transaction processing, and

data-driven decision making and executive support. Upon graduation, students initiating

careers as information systems specialists should be able to analyze information requirements

and business processes and be able specify and design systems that are aligned with

organizational goals.

Information Technology … involves the design, implementation and maintenance of

technology solutions and support for users of such systems. This four-year curriculum focuses

on crafting hardware and software solutions as applied to networks, security, client-server and

mobile computing, web applications, multimedia resources, communications systems, and the

planning and management of the technology lifecycle. Upon graduation, students initiating

careers as information technology professionals should be able to work effectively at planning,

implementation, configuration, and maintenance of an organization’s computing infrastructure.

Software Engineering … involves the design, development and testing of large, complex, and

safety-critical software applications. This four-year curriculum focuses on the integration of

computer science principles with engineering practices as applied to constructing software

systems for avionics, healthcare applications, cryptography, traffic control, meteorological

systems and the like. Upon graduation, students initiating careers as software engineers

should be able to properly perform and manage activities at every stage of the life cycle of

large-scale software systems.

Transfer Programs are specifically designed for students intending to matriculate into the

junior year of a four-year program; these are typically Associate of Arts (AA) or Associate of

Science (AS) degree programs.

Bibliography

ACM Code of Ethics and Professional Conduct, (1992), Available from www.acm.org/about-

acm/acm-code-of-ethics-and-professional-conduct

ACM/IEEE-CS Joint Curriculum Task Force, Computer Science 2013: Curriculum Guidelines for

Undergraduate Programs in Computer Science, (2013), Available from www.cs2013.org.

ACM/IEEE-CS Joint Curriculum Task Force, Computing Curricula 2001: Computer Science,

(2001).

ACM/IEEE-CS Joint Curriculum Task Force, Computing Curricula 1991, ACM Press and IEEE

Computer Society Press (1991).

ACM Joint Task Force, Undergraduate Cybersecurity Curricular Guidelines (forthcoming 2017),

Available from www.csec2017.org.

ACM Two-Year College Computing Curricula Task Force, Computing Curricula 2009: Guidelines

for Associate-Degree Transfer Curriculum in Computer Science, ACM Press (2009).

ACM Two-Year College Computing Curricula Task Force, Computing Curricula 2003: Guidelines

for Associate-Degree Curricula in Computer Science, ACM Press (2003).

ACM Two-Year College Computing Curricula Task Force, Computing Curricula Guidelines for

Associate-Degree Programs: Computing Sciences. ACM Press (1993).

American Association of Community Colleges, http://www.aacc.nche.edu/

Anderson, L.W., and Krathwohl, D.A., A Taxonomy for Learning, Teaching, and Assessing: A

Revision to Bloom’s Taxonomy of Educational Objectives, (2001).

Bloom, Benjamin S., The Taxonomy of Educational Objectives: Classification of Educational

Goals. Handbook I: The Cognitive Domain, McKay Press, New York (1956).

IEEE Computer Society, www.computer.org/education/

National Institute of Standards and Technology, National Initiative for Cybersecurity Educaiton

(NICE), The National Cybersecurity Workforce Framework, (April 2014), Available from

http://csrc.nist.gov/nice/framework/

The White House, Office of the Press Secretary, FACT SHEET: National Cybersecurity Action

Plan (NCAP), (February 2016), Available from www.whitehouse.gov/the-press-

office/2016/02/09/fact-sheet-cybersecurity-national-action-plan

